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ABSTRACT

Many researchers have recently acquainted and researched several interesting subfamilies of 
bi-univalent function family 𝛿 and they have found non-sharp estimates on the first two Tay-
lor-Maclaurin coefficients |𝑎2| and |𝑎3|. In this current work, the subfamily  of 
bi-univalent functions in the sense of symmetric conjugate points with quasi subordination 
is defined. The Maclaurin coefficients |𝑎2|, |𝑎3| and besides related with these coefficients 
|𝑎3 − 𝑎2

2| for functions belonging to this subfamily are derived. Further some corollaries are 
also presented.
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INTRODUCTION 

Let 𝒜 be the family of functions 𝑠 of the type 

(1)

which is analytic in the open disc Ω = {𝑧 ∈ ℂ ∶ |𝑧|  < 1}, 
and holds normalized equalities 𝑠(0) = 𝑠 ′(0) − 1 = 0.

Furthermore, we indicate all analytic function family 
which are univalent in Ω by 𝑆. Let’s take 𝑡(𝑧) be an analytic 
function in Ω, such thatt

	 (2)

where all coefficients are real. Besides, let the function Ξ 
be an analytic and univalent function with positive real part 

in Ω with Ξ (0) = 1, Ξ′(0) > 0 and Ξ maps the unit disc Ω 
onto a region starlike in the sense of Ξ (0) = 1 and sym-
metric in the sense of real axis. Taylor’s series expansion for 
such a function is of the type

(3)

where all coefficients are real and 𝐴1 > 0.
For two functions 𝑠 and 𝑟 analytic in Ω, we say that the 

function 𝑠 is subordinate to 𝑟, written 𝑠 ≺ 𝑟 or 𝑠(𝑧) ≺ 𝑟(𝑧) 
(𝑧 ∈ Ω), if there exist a Schwarz function 𝑤 analytic in Ω 
with 𝑤(0) = 0  and |𝑤(𝑧)|  < 1, such that 𝑠(𝑧) = 𝑟(𝑤(𝑧)), 
𝑧 ∈ Ω.
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Robertson [12] acquainted the notion of quasi-subor-
dination in 1970. For two analytic functions 𝑠 and 𝑟, the 
function 𝑠 is said to be quasi-subordinate to 𝑟 in Ω and 
written as

if there exists an analytic function |𝑡(𝑧)|  ≤ 1, 𝑧 ∈ Ω such 
that  analytic in Ω,

Namely, there exists a Schwarz function 𝑤(𝑧) with 𝑤(0) 
= 0 and |𝑤(𝑧)|  ≤ |𝑧|  such that 

	

Observe that if 𝑡(𝑧) = 1, then 𝑠(𝑧) = 𝑟(𝑤(𝑧)), so that 
𝑠(𝑧) ≺ 𝑟(𝑧) in Ω. Besides, realize that if 𝑤(𝑧) = 𝑧, then 
𝑠(𝑧) = 𝑡(𝑧) 𝑟(𝑧), and it is said that 𝑠 is majorized by 𝑟 and 
written 𝑠(𝑧) ≪ 𝑟(𝑧) in Ω. Therefore it is apparent that qua-
si-subordination is a generalization of subordination as well 
as majorization (see e.g. [1, 3, 6, 10-12] for works concerned 
with quasi-subordination and subordination).

The Koebe-one quarter theorem [5] guarantees that the 
image of Ω under every univalent function 𝑠 ∈ 𝒜 comprises 
a disc of radius . Hence every univalent function 𝑠 has an 
inverse 𝑠−1 providing 𝑠−1(𝑠(𝑧)) = 𝑧, 𝑧 ∈ Ω and 𝑠(𝑠−1(w)) = 
w, . Indeed, the inverse function 𝑠−1 
is given by

	 	 (4)

If both 𝑠 and 𝑠−1 are univalent in Ω, then the function 𝑠 
∈ 𝒜 is said to be bi-univalent in Ω. Let 𝛿 indicate the family 
of bi-univalent functions defined in Ω. 

Many researchers have recently acquainted and 
researched several interesting subfamilies of bi-univalent 
function family 𝛿, and they have found non-sharp estimates 
on the first two Taylor-Maclaurin coefficients |𝑎2| and |𝑎3| 
[2, 4, 13-15, 17]. However, we have a few study about the 
general coefficient bounds |𝑎𝑛| for bi- univalent functions 
in the literature [8, 9]. There is still an obvious problem for 
|𝑎𝑛|, 𝑛 ∈ ℕ − {1, 2, 3}, where ℕ = {1, 2, 3, … }. El-Ashwah 
and Thomas [7] acquainted the family 𝑆∗ of functions 
named starlike in the sense of symmetric conjugate points, 
they are the functions 𝑠 ∈ 𝑆 provide the inequality

If

then, the function 𝑠 ∈ 𝑆 is named convex in the sense 
of symmetric conjugate points. The family of all convex 
functions in the sense of symmetric conjugate points is 
indicated by 𝐶𝑠𝑐.

Motivated by the earlier works in Wanas and Majeed 
in [16], by using quasi-subordinations, we introduce new 
subfamilies of bi-univalent functions family 𝛿 namely, sub-
families of bi-univalent functions in the sense of symmetric 
conjugate points.

We now define the following:
Definition 1.1. For 0 < 𝛼 ≤ 1, a function 𝑠 ∈ 𝛿 given by 

(1.1) is said to be in the family , if it provides the 
following quasi-subordinations:

and

where the function 𝑔 is the extension of 𝑠−1 to Ω.
We consider that that for 𝑡(𝑧) = 1, we have the family 

 as defined as follows:
Definition 1.2. For 0 < 𝛼 ≤ 1, a function 𝑠 ∈ 𝛿 given 

by (1.1) is said to be in the family , if the following 
subordinations hold:

and
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where the function 𝑟 is the extension of 𝑠−1 to Ω.
Upon taking𝛼 = 0, we obtain the family 

 as defined follow:
Definition 1.3. A function𝑠 ∈ 𝛿 given by (1.1) is said 

to be in the family  if the following subordinations 
hold:

and

Motivated by the earlier works in Wanas and Majeed 
in [16], we introduce and investigate a new subfamily of 
functions by the technique of quasi-subordination. The 𝑎2 
and 𝑎3 coefficient estimates and also 𝑎3 − 𝑎2

2 for functions 
in the subfamily  are derived. Some important 
results are also presented in this study.

We should remember here the following lemma so as to 
derive our basic results:

Lemma 1.4. [5]. If 𝑝 ∈ 𝒫 then |𝑐𝑘| ≤ 2 for each 𝑘, 
where 𝒫 is the family of functions 𝑝 analytic in Ω for which 
ℜ{𝑝(𝑧)}  > 0, 𝑝(𝑧) = 1 + 𝑝1𝑧 + 𝑝 2𝑧2 + ⋯ for 𝑧 ∈ Ω.

COEFFICIENT BOUNDS FOR 

In this part, we give resulting estimates for |𝑎2| and |𝑎3|. 
Furthermore, |𝑎3 − 𝑎2

2| of the functions  
given by (1) is derived.

We firstly, give main theorem below:
Theorem 2.1. Let 0 < 𝛼 ≤ 1. If 𝑠 ∈ 𝒜 of the type (1.1) 

belongs to the family , then

and

Proof. Let . In the light of Definition 1.1, 
there are analytic functions 𝜉, 𝜙: Ω → Ω with 𝜉(0) = 𝜙(0) 
= 0, holding

	 	 (5)

and

	 	 (6)

Define the functions 

and

or equivalently,

and

Then, 𝜂(𝑧) and 𝜇(𝑤) analytic in Ω with 𝜂(0) = 𝜇(0) = 
1. Since the functions 𝜂(𝑧) and 𝜇(𝑤) have a positive real 
part in Ω, |𝜉𝑖| ≤ 2 and |𝜙𝑖| ≤ 2. Now,

	 	 (7)

and

	 	 (8)

In the view of (5), (6) and (7), (8) we obtain 

	 	 (9)
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	 	 (10)

	 	 (11)

	 	 (12)

It follows from (9) and (11) that 

	 	 (13)

and

	 	 (14)

Now, by adding (10) and (12), also using (13), we get, 

	 	 (15)

Using (14) in (15), we obtain

Applying |𝜉𝑖| ≤ 2 and |𝜙𝑖| ≤ 2 for the coefficients 𝜉2 
and 𝜙2, we immediately get 

This gives the desired bound on |𝑎2| as given in 
Theorem 2.1.

In addition to calculate the third bound, by subtract-
ing (12) from (10), we immediately have the equality given 
below:

	 	 (16)

Using (15) in (16), we get 

Applying |𝜉𝑖| ≤ 2 and |𝜙𝑖| ≤ 2 for the coefficients 𝜉1, 𝜉2 
and 𝜙1, 𝜙2, we obtain the desired bound on |𝑎3| given in 
Theorem 2.1.

Lastly, from (16) and (13)

Applying again |𝜉𝑖| ≤ 2 and |𝜙𝑖| ≤ 2 over again for the 
coefficients 𝜉1, 𝜉2 and 𝜙1, 𝜙2, we can easily acquire the last 
desired result in Theorem 2.1.

CONCLUDING COROLLARIES

For the function Ξ is given by

which gives

Theorem 2.1 reduces to the following corollary.

Corollary 3.1. Let . Then

and

Remark 3.2. For 𝛼 = 0 and , the results 
in Corollary 3.1 reduced to results given below.

Upon considering −1 ≤ 𝐴 ≤  𝐵 < 1 and the function 
Ξ(z) given by 

Then we get 

So, the following corollary can be obtain readily,

Corollary 3.3. Let . Then

and
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Remark 3.4. Upon taking 𝛼 = 0 in Corollary 3.3, we 
immediately acquire the following results:

and

Furthermore when the function Ξ(z) is given by

we have 

Hence, we reach the corollary given below.

Corollary 3.5. Let , Then 

Remark 3.6. Upon taking 𝛼 = 0 in Corollary 3.5, we can 
immediately acquire the following results

Finally, considering the function Ξ(z) as follows:

we obtain

So, we acquire the corollary given below.

Corollary 3.7. Let . Then

Remark 3.8. Upon taking 𝛼 = 0 in Corollary 3.7, we 
readily reach that

and

Remark 3.9. For the case of 𝑡(𝑧) ≡ 1 and different 
versions of Ξ(z), other different results can be obtained. 
The details of these results may be left as an exercise for the 
interested readers.

CONCLUSION

Motivated by the earlier works in Wanas and Majeed in 
[16], we have introduced and investigated a new subfam-
ily of functions by the technique of quasi-subordination. 
Then, our main conclusion is expressed as Theorem 2.1 
and proved. The second and third Maclaurin-coefficients 
|𝑎2|, |𝑎3| and also related with these coefficients |𝑎3 − 𝑎2

2| 
for functions belonging to this subfamily have derived. In 
addition, new corollaries and remarks have been obtained 
for different selections of some parameters.
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