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Using a machine learning approach, this study examines how operational and financial efficiency metrics 
influence stock prices in the aviation industry. A CatBoost regression model enhanced with SHapley Additive 
exPlanations (SHAP) was developed using data from 65 global aviation companies collected between 2015 and 
2023. The model predicts stock prices based on various operational and financial indicators, including Total 
Revenue per Available Seat Mile (ASM), Passenger Load Factor, liquidity ratios, and debt-to-assets ratios. The 
findings suggest that operational efficiency metrics, particularly Total Revenue per ASM and Passenger Load 
Factor, play a significant role in predicting stock prices within the aviation sector. Financial metrics, such as the 
Quick Ratio and Debt-to-Assets Ratio, also contribute to the model but appear to have a secondary influence 
compared to operational factors. SHAP values provided interpretable insights into the model's predictions, 
allowing for a better understanding of the relative importance of different features. Furthermore, the study's 
findings offer support for the semi-strong form of the Efficient Market Hypothesis (EMH), demonstrating that 
operational and financial metrics are reflected in stock prices. These results indicate that aviation companies 
demonstrating higher operational efficiency may be better positioned for favorable stock market performance, 
although financial health remains important. This study contributes to the existing literature by integrating 
operational and financial metrics into a machine learning framework, offering a comprehensive and 
interpretable model for stock price prediction in the aviation industry. 
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ÖZ 
Bu çalışma, bir makine öğrenimi yaklaşımı kullanarak, operasyonel ve finansal verimlilik ölçütlerinin havacılık 
sektöründeki hisse senedi fiyatlarını nasıl etkilediğini incelemektedir. SHapley Additive exPlanations (SHAP) ile 
geliştirilmiş bir CatBoost regresyon modeli, 2015-2023 yılları arasında 65 küresel havacılık şirketinden toplanan 
veriler kullanılarak geliştirilmiştir. Model, Mevcut Koltuk Kilometre Başına Toplam Gelir (ASM), Yolcu Yük Faktörü, 
likidite oranları ve borç-varlık oranları dahil olmak üzere çeşitli operasyonel ve finansal göstergelere dayalı olarak 
hisse senedi fiyatlarını tahmin etmektedir. Bulgular, özellikle ASM başına  Toplam Gelir ve Yolcu Yük Faktörü gibi 
operasyonel verimlilik ölçütlerinin havacılık sektöründeki hisse senedi fiyatlarının tahmininde önemli bir rol 
oynadığını göstermektedir. Hızlı oran ve borç varlık oranı gibi finansal ölçütler de modele katkıda bulunmakta 
ancak operasyonel faktörlere kıyasla ikincil bir etkiye sahip görünmektedir. SHAP değerleri, modelin tahminleri 
hakkında yorumlanabilir bilgiler sağlayarak farklı özelliklerin göreceli öneminin daha iyi anlaşılmasına olanak 
tanımıştır. Ayrıca çalışmanın bulguları, operasyonel ve finansal metriklerin hisse senedi fiyatlarına yansıdığını 
göstererek, Etkin Piyasa Hipotezi'nin (EPH) yarı-güçlü formunu desteklemektedir. Bu sonuçlar, finansal sağlık 
önemini korusa da, daha yüksek operasyonel verimlilik gösteren havacılık şirketlerinin olumlu borsa performansı 
için daha iyi konumlandırılabileceğini göstermektedir. Bu çalışma, operasyonel ve finansal ölçütleri bir makine 
öğrenimi çerçevesine entegre ederek havacılık sektöründe hisse senedi fiyat tahmini için kapsamlı ve 
yorumlanabilir bir model sunarak mevcut literatüre katkıda bulunmaktadır.  
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Introduction 
 

The aviation industry, highly sensitive to both internal 
operational dynamics and external macroeconomic 
forces, provides a unique setting for examining how 
efficiency impacts stock performance. Key performance 
indicators, such as revenue passenger kilometers (RPK), 
cost per available seat kilometer (CASK), and load factor 
(LF), have been extensively studied in this context. 
Increases in RPK are generally associated with stock price 
growth, while higher CASK and LF reflect inefficiencies in 
cost management and capacity utilization, adversely 
affecting stock values (Alici and Sevil, 2022). These 
findings align with broader discussions in air transport 
economics, where operational efficiency encompasses 
aerodynamic, fuel, and cost efficiency, each influencing an 
airline's ability to maximize revenue within specific market 
conditions (McLean, 2005). 

Operational efficiency's broader implications on stock 
prices are supported by empirical research. Metrics such 
as the BOPO ratio negatively influence stock prices, 
indicating that operational inefficiencies directly affect 
financial performance (Wulansari et al., 2024). Similarly, 
profitability and cost efficiency are critical determinants of 
stock values, with profitability exhibiting a stronger 
positive impact (Putra et al., 2024). Technological 
interventions, such as blockchain, have been proposed to 
enhance operational transparency and efficiency, though 
market responses to such advancements have been mixed 
(Gimerská et al., 2023). Additionally, macroeconomic 
indicators such as inflation and GDP interact with 
operational metrics to shape stock prices, underscoring 
the multifaceted relationship between internal efficiency 
and external economic conditions (Aldabbas et al., 2023). 

Financial efficiency also plays a critical role in 
determining stock prices within the aviation industry. 
Effective financial management of assets, operating 
income, and market capitalization enhances financial 
health and stock performance (Slater, 2023). Hedging 
strategies, mainly through financial derivatives, have been 
shown to mitigate operational cost fluctuations, stabilize 
profitability, and boost stock prices during market 
instability (Dewikristi Siallagan & Prijadi, 2020). These 
tools help airlines manage external shocks, such as fuel 
price volatility and exchange rate fluctuations, critical 
factors influencing profitability (Yilmaz & Köse, 2023). 

Operational cost management is another critical factor 
influencing stock performance. Research on the Brazilian 
and Indian aviation sectors highlights the importance of 
managing labor, aircraft acquisition, and fuel costs, all of 
which dominate the cost structure in this industry. 
Efficiently controlling these factors positively impacts 
profitability and stock valuation (Lopes & Beuren, 2017; 
Singh et al., 2019). Moreover, operational metrics such as 
stage length and seats per kilometer are crucial for 
determining operational efficiency and its effect on stock 
performance (Singh et al., 2019). These findings align with 
the Efficient Market Hypothesis (EMH) principles, which 
asserts that financial asset prices reflect all available 

information, thereby reducing opportunities for abnormal 
returns (Okur & Gurbuz, 2015; Rossi, 2016). 

The Efficient Market Hypothesis (EMH), initially 
proposed by Eugene Fama (1970), serves as a 
foundational theory in finance. EMH posits that stock 
prices fully incorporate all relevant information, making it 
impossible to achieve consistent abnormal returns. Fama 
classified market efficiency into three forms: weak, semi-
strong, and strong. Weak-form efficiency suggests that 
historical prices do not predict future movements, semi-
strong form posits that all publicly available information is 
reflected in prices, and strong form extends this to include 
insider information (Fama, 1970; Yongxin, 2009). 
However, anomalies such as speculative bubbles and 
excess volatility challenge the validity of EMH, particularly 
during periods of market stress (Sachdeva, 2020). Studies 
on market anomalies, including calendar effects and 
return predictability, further question EMH’s applicability 
across different contexts (Rossi, 2016; Woo et al., 2020). 

Macroeconomic factors like oil prices, exchange rates, 
and GDP growth further complicate the relationship 
between efficiency and stock prices. Depending on global 
markets, airlines are especially vulnerable to these 
external forces. Research demonstrates that external 
factors, such as oil price volatility and GDP growth, often 
outweigh internal operational metrics, such as load factor 
or fleet size, in determining profitability (Yilmaz & Köse, 
2023). Moreover, regulatory and political environments 
significantly impact airline performance, with stable 
conditions fostering better operational efficiency and 
stock performance (Yadav & Goriet, 2022). Strategic 
financial tools, such as hedging and diversification, are 
essential for managing these external pressures and 
stabilizing financial outcomes (Woo et al., 2020). 

Corporate governance also plays a vital role in 
influencing stock prices within the aviation industry. 
Airlines with robust governance frameworks, including 
larger boards and frequent committee meetings, 
demonstrate stronger financial performance, which 
translates into higher stock market valuations (Wang et 
al., 2011). Effective governance enables airlines to 
manage risks and navigate external shocks effectively, 
enhancing shareholder value (Lee & Park, 2013). Similarly, 
strategic alliances and partnerships allow airlines to 
optimize operational efficiency, expand market reach, and 
improve profitability, contributing to stronger financial 
outcomes and stock valuations (Bissessur & Alamdari, 
1998). 

The aviation industry exemplifies the intricate 
relationships between operational and financial 
efficiencies and stock performance. By analyzing these 
factors within the Efficient Market Hypothesis (EMH) 
framework, as established by Fama (1970), this study 
seeks to provide insights into the determinants of stock 
price movements. This comprehensive exploration 
highlights how internal metrics and external forces 
collectively shape financial outcomes in this dynamic and 
competitive sector. 
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This paper is structured as follows: The next section 
reviews existing literature on operational and financial 
efficiency in the aviation sector and their implications for 
stock performance. The third section details the data 
collection process and methodology, emphasizing the 
CatBoost model and SHAP interpretability framework. 
Section four presents the findings, focusing on feature 
importance and the role of operational and financial 
metrics. Section five's discussion contextualizes existing 
research results, highlighting practical implications and 
limitations. Finally, the conclusion synthesizes the key 
insights and suggests avenues for future research. 
 
Literature Review 

 
Studies have consistently examined the relationship 

between operational metrics and their implications for 
airline profitability and stock valuation. Alici and Sevil 
(2022) provide evidence that key performance indicators 
such as revenue passenger kilometers (RPK) and load 
factor (LF) correlate positively with airline stock prices. In 
contrast, cost per available seat kilometer (CASK) shows a 
negative association. Similarly, Labantová and Begera 
(2014) emphasize the importance of operational 
indicators such as seat occupancy and fuel efficiency in 
enhancing profitability and influencing stock market 
performance. These analyses suggest a measurable link 
between operational data and financial outcomes, 
providing a basis for further exploration of efficiency 
drivers in the aviation sector. 

The increasing reliance on data-driven methods across 
industries highlights the transformative impact of 
machine learning in optimizing business processes. In the 
food and beverage sector, Şahinbaş (2022) illustrates how 
machine learning models such as XGBoost and CatBoost 
can significantly enhance price prediction accuracy, 
enabling restaurant owners and entrepreneurs to set 
competitive prices aligned with market expectations. This 
approach ensures better customer satisfaction and 
improves profitability by identifying optimal pricing 
strategies based on specific business features. Similarly, 
Yüksel (2023) underscores the pivotal role of demand 
forecasting in the retail sector, demonstrating the 
superior performance of CatBoost in predicting consumer 
demand with high accuracy. These findings emphasize the 
transition from heuristic to quantitative approaches, 
showcasing the power of advanced algorithms in 
achieving operational efficiency, reducing costs, and 
minimizing environmental impacts through waste 
reduction. Together, these studies reflect the growing 
necessity for businesses to adopt machine learning to 
remain competitive, leveraging data science to make 
informed, actionable decisions. 

Studies on flight price prediction and passenger 
satisfaction have employed advanced machine learning 
models to uncover nuanced relationships between 
dependent variables such as flight prices and satisfaction 
levels and independent factors like time, space, and 
density. Choudhary et al. (2023) utilize a Random Forest 

model to predict flight ticket prices, achieving 95% 
accuracy by integrating variables such as temporal and 
spatial data. Similarly, Kumar et al. (2024) corroborate the 
effectiveness of Random Forest, highlighting its 
generalizability and superior performance compared to 
baseline models. Both studies emphasize the pivotal role 
of time and spatial metrics in driving prediction accuracy, 
suggesting the broader applicability of these factors in 
aviation pricing strategies. Nagesh et al. (2023) extend this 
analysis using Decision Tree Regression, demonstrating 
85% accuracy in predicting ticket prices, thereby 
underscoring tree-based models' effectiveness for 
numerical and categorical data. 

In contrast, focusing on passenger satisfaction 
introduces new dimensions to the analysis. Hong et al. 
(2023) explore the relationship between satisfaction 
levels and operational metrics using RF-RFE-LR, revealing 
time and density as significant predictors. Bhargav and 
Prabu (2023) further refine this approach by comparing 
KNN and a Hybrid Random Forest model, identifying the 
latter as superior in analyzing satisfaction survey data. 
These studies align in their methodological reliance on 
machine learning but diverge in application focus—pricing 
versus satisfaction. While flight price studies emphasize 
quantitative accuracy in prediction, satisfaction studies 
delve deeper into subjective metrics, offering insights into 
consumer experience. Together, they reflect the aviation 
sector's shift from heuristic approaches to data-driven 
methods, harnessing advanced algorithms to optimize 
operational and customer-centric outcomes. 

Operational scale and workforce management have 
also been investigated for their impact on cost behavior. 
Lopes and Beuren (2017), focusing on Brazilian airlines, 
highlight cost asymmetry as a significant factor where 
workforce and fleet size variations directly affect 
operational expenses. Singh et al. (2019) similarly 
underline the importance of optimizing variables such as 
fuel prices, payload, and stage length in reducing costs. 
These findings illustrate the nuanced relationships 
between operational strategies and their financial effects, 
though further studies could refine these conclusions 
across different market contexts. 

The impact of external economic factors on airline 
financial outcomes has been extensively studied, with 
varying conclusions about the extent of these influences. 
Yilmaz and Köse (2023) identify GDP, oil prices, and 
exchange rates as significant variables affecting 
profitability and stock prices, often to a greater extent 
than internal metrics. Complementing this, Yadav and 
Goriet (2022) address the effects of political and legal 
conditions on airline performance, offering insights into 
how external pressures shape operational strategies. 
Dewikristi Siallagan and Prijadi (2020) explore the role of 
hedging strategies, particularly fuel price management, in 
stabilizing financial outcomes, reinforcing that external 
variables are integral to financial resilience. 

The role of financial management in improving airline 
operations, particularly during structural transitions such 
as IPOs, has received attention. Lee and Park (2013) note 
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significant improvements in operational metrics like RPK 
and LF among low-cost carriers (LCCs) following public 
listings, suggesting that financial restructuring can 
influence operational efficiency. Amankwah-Amoah 
(2018) identifies financial constraints as a barrier to 
operational improvement for African airlines, highlighting 
regional variations in how financial structuring affects 
performance. These studies indicate that financial 
management practices can affect operational outcomes, 
though the specific mechanisms warrant further 
examination. 

Collaboration among airlines, mainly through 
alliances, has been identified as a potential driver of 
operational and financial efficiency. Bissessur and 
Alamdari (1998) focus on network size and service 
frequency, suggesting these factors can enhance 
profitability through improved resource utilization. Zhang 
et al. (2021) expand on this perspective by integrating 
operational and financial efficiency metrics through a 
network DEA approach. While these findings highlight 
collaborative strategies as a possible avenue for efficiency 
gains, the effectiveness of such measures may vary 
depending on market conditions and alliance structures. 

Environmental performance has been increasingly 
recognized for its potential effects on financial and 
operational outcomes. Seufert et al. (2017) propose an 
efficiency measure called Luenberger-Hicks-Moorsteen by 
Briec and Kristiaan Kerstens (2009) that accounts for CO2 
emissions, showing that airlines adopting stricter 
environmental practices achieve improved financial 
performance. Lee et al. (2017) report similar findings, with 
higher environmental efficiency scores linked to better 
profitability and stock performance. These observations 
align with Saranga and Nagpal (2016), who highlight cost 
reductions from environmentally focused operational 
improvements in Indian low-cost carriers. While these 
studies present compelling evidence of a relationship 
between environmental strategies and financial 
outcomes, their applicability across different regulatory 
contexts remains an open question. 

Research has also investigated how airlines respond to 
macroeconomic volatility and operational disruptions. 
Piranti (2021) examines the influence of fuel price 
fluctuations and exchange rates, observing significant 
effects on stock performance. This perspective aligns with 
Mantin et al. (2012), who analyze the impact of external 
shocks like the 9/11 attacks, noting that macroeconomic 
instability exacerbates operational challenges. Evans and 
Schäfer (2014) simulate responses to airport capacity 
constraints, suggesting that scheduling and aircraft size 
adjustments can mitigate financial impacts. Lee (2023) 
further identifies network flexibility as a critical factor in 
absorbing external shocks. These studies collectively 
underline the importance of strategic planning in 
managing disruptions, though their implications may vary 
depending on specific market or operational conditions. 

The relationship between operational and financial 
efficiency and airline performance continues to be a 

subject of rigorous study, with diverse approaches 
highlighting both internal and external influences. While 
operational metrics such as RPK, LF, and CASK are 
frequently linked to profitability and stock valuations, 
macroeconomic and regulatory factors also significantly 
shape outcomes. Financial management, collaborative 
efforts, and environmental considerations offer additional 
pathways for improving performance, though the 
effectiveness of these strategies may differ across 
markets and regulatory environments. The 
interconnected nature of these findings underscores the 
complexity of achieving sustained efficiency and financial 
stability in the aviation industry. Further research 
addressing regional and contextual variations could 
provide deeper insights into these dynamics. 

Previous studies have primarily used traditional 
methods to explore operational and financial metrics' 
impact on aviation stock prices, often treating these 
factors separately. This study differs by integrating both 
metrics into a machine learning framework using CatBoost 
and SHAP values, providing a unified, interpretable model. 
This approach offers more profound insights into the 
relative importance of these factors, bridging the gap 
between traditional methods and modern data-driven 
analysis. 

 
Methodology 

 
Data Collection and Preprocessing 
The data employed in this study were obtained from 

the Eikon platform (retrieved on 2 June 2024), 
encompassing the period from 2015 to 2023 and 
comprising 65 aviation companies, shown in Table 1, 
across the globe. Eikon provided comprehensive financial 
and operational data for each company, which is essential 
for analyzing the factors influencing stock prices in the 
aviation industry.  

The time frame of 2015-2023 and the selection of 65 
companies for this study represent the most 
comprehensive and reliable dataset available, 
emphasizing temporal coverage and data integrity. These 
65 companies were explicitly chosen for their consistent 
and high-quality reporting, ensuring robust and valid 
analysis. This focus on data integrity may result in the 
exclusion of smaller companies with incomplete records, 
prioritizing the inclusion of firms with the most accurate 
and comprehensive data. 

Data collection was finalized in 2024, with the latest 
available data extending to 2023. Significant gaps and 
inconsistencies were observed in records before 2015, 
which would have compromised the analysis's robustness 
and comparability. By contrast, the period from 2015 
onwards provides the most extensive and complete 
records for operational and financial variables, ensuring 
consistency across the selected companies. 

The dataset included operational and financial 
variables used as predictors in the model. As seen in Table 
2, the critical variables selected for this study were: 
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Table 1. Aviation Companies 

# Identifier Company Name # Identifier Company Name 

1 LHAG.DE Deutsche Lufthansa AG 34 CAPI.KL Capital A Berhad 

2 0293.HK Cathay Pacific Airways Ltd 35 JET.NS Jet Airways (India) Ltd 

3 ALK.N Alaska Air Group Inc 36 REX.AX Regional Express Holdings 

4 AIRF.PA Air France KLM SA 37 CPA.N Copa Holdings SA 

5 9201.T Japan Airlines Co Ltd 38 CHR.TO Chorus Aviation Inc 

6 PAL.PS PAL Holdings Inc 39 UAL.OQ United Airlines Holdings Inc 

7 600115.SS China Eastern Airlines Corp 40 ALGT.OQ Allegiant Travel Co 

8 SKYW.OQ SkyWest Inc 41 601111.SS Air China Ltd 

9 LUV.N Southwest Airlines Co 42 AC.TO Air Canada 

10 THYAO.IS Turk Hava Yollari AO 43 ICEAIR.IC Icelandair Group hf 

11 HA.OQ Hawaiian Holdings Inc 44 AIRA.DU Air Arabia PJSC 

12 SIAL.SI Singapore Airlines Ltd 45 DAL.N Delta Air Lines Inc 

13 THAI.BK Thai Airways International 46 AGNr.AT Aegean Airlines SA 

14 AIR.NZ Air New Zealand Ltd 47 CEB.PS Cebu Air Inc 

15 FIA1S.HE Finnair Oyj 48 JAZK.KW Jazeera Airways Co KSCP 

16 9202.T ANA Holdings Inc 49 PGSUS.IS Pegasus Hava Tasimaciligi 

17 2610.TW China Airlines Ltd 50 AIRX.KL AirAsia X Bhd 

18 003490.KS Korean Air Lines Co Ltd 51 SAVE.N Spirit Airlines Inc 

19 AFLT.MM Aeroflot-Rossiyskiye Avialinii PAO 52 ICAG.L International Consolidated Airlines Group SA 

20 SPJT.BO Spicejet Ltd 53 601021.SS Spring Airlines Co Ltd 

21 QAN.AX Qantas Airways Ltd 54 GIAA.JK Garuda Indonesia (Persero) 

22 LTM.SN LATAM Airlines Group SA 55 AVT_p.CN Avianca Holdings SA 

23 RYA.I Ryanair Holdings PLC 56 BA.BK Bangkok Airways PCL 

24 UTAR.MM Aviakompaniya UTair PAO 57 AQZ.AX Alliance Aviation Services 

25 2618.TW Eva Airways Corp 58 AAV.BK Asia Aviation PCL 

26 EZJ.L Easyjet PLC 59 603885.SS JUNEYAO AIRLINES Co Ltd 

27 600221.SS Hainan Airlines Holding Co Ltd 60 VOLARA.MX Controladora Vuela Compania de Aviacion SAB de 

28 020560.KS Asiana Airlines Inc 61 AAL.OQ American Airlines Group Inc 

29 JBLU.OQ JetBlue Airways Corp 62 WIZZ.L Wizz Air Holdings PLC 

30 ELAL.TA El Al Israel Airlines Ltd 63 AZUL.N Azul SA 

31 600029.SS China Southern Airlines Co 64 INGL.NS Interglobe Aviation Ltd 

32 NAS.OL Norwegian Air Shuttle ASA 65 089590.KS JejuAir Co Ltd 

33 GOLL4.SA Gol Linhas Aereas Inteligentes SA    
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Table 2. Variables 

Variables Definiton Literature Reference 

Total 
Revenue 
per ASM 
(USD) 

Refers to the total operating revenue (which may 
include passenger, cargo, and other revenues) 
divided by the available seat miles, providing a 
measure of revenue generation relative to capacity 
provided (Zou et al., 2015). 

Lee (2019) explored the effect of operational 
performance on financial performance, focusing on 
revenue per available seat mile (ASM) as a significant 
factor. This variable captures the operational revenue 
efficiency of airlines.  

Passenger 
Load 
Factor 

Calculated as the total Revenue Passenger Miles 
(RPMs) divided by the Available Seat Miles (ASMs), 
expressed as a percentage. It indicates the 
efficiency of an airline in filling available seating 
capacity (Zou et al., 2015). 

Alici & Sevil (2022) found that the passenger load factor 
significantly influences stock prices, indicating that 
operational efficiency impacts financial performance. 
Yılmaz & Köse (2023) also highlighted the passenger 
load factor as a critical driver of profitability in air 
transportation. 

Quick 
Ratio 

The Quick Ratio is a stringent test of liquidity that 
considers assets most easily convertible to cash, 
excluding inventories. The formula: Quick Ratio = 
(Cash + Marketable Securities + Accounts 
Receivable) / Current Liabilities. It measures the 
ability to meet short-term obligations without 
relying on inventory (Subramanyam and Wild, 
2014). 

Tanrıverdi et al. (2023) analyzed financial performance, 
including the quick ratio, as part of sustainability 
evaluations in airlines, showing its role in liquidity 
assessment. Sumerli Sarıgül et al. (2023) used the quick 
ratio to assess the financial stability of European airlines. 

Current 
Ratio 

Measures a company’s ability to meet short-term 
liabilities with short-term assets. Formula: Current 
Ratio = Current Assets / Current Liabilities. It 
provides a safety margin for covering potential 
shortfalls in non-cash current assets 
(Subramanyam and Wild, 2014). 

Tanrıverdi et al. (2023) emphasized the importance of 
the current ratio in assessing airline liquidity and 
operational sustainability. Sumerli Sarıgül et al. (2023) 
incorporated the current ratio in evaluating European 
airlines' financial health.  

Tot 
Debt/Tot 
Assets, % 

Indicates the proportion of a company’s assets 
financed by debt. Formula: Debt to Total Assets 
Ratio = Total Debt / Total Assets. A higher ratio 
reflects greater financial leverage and potential 
insolvency risk (Subramanyam and Wild, 2014). 

Tanrıverdi et al. (2023) utilized the debt-to-asset ratio to 
assess airlines' financial leverage and its impact on 
sustainability during the COVID-19 pandemic. Sumerli 
Sarıgül et al., (2023) included this variable in their 
financial performance analysis of European airlines. 

Return On 
Assets  

Measures the efficiency of using assets to generate 
profits. Formula: ROA = Net Profit/ Total Assets. 
ROA provides insight into profitability relative to 
the company’s asset base (Subramanyam and Wild, 
2014). 

Alici & Sevil (2022) demonstrated that return on assets 
(ROA) directly influences stock prices, making it a critical 
variable in operational and financial performance 
evaluations. Lopes et al., (2016) examined the role of 
ROA as a profitability driver among the top 30 global 
airlines. 

Asset 
Turnover 

Reflects the efficiency of utilizing assets to generate 
sales. Formula: Asset Turnover = Sales / Average 
Total Assets. High turnover indicates the effective 
use of assets in generating revenue (Subramanyam 
and Wild, 2014). 

Sumerli Sarıgül et al., (2023) considered asset turnover a 
vital indicator of operational efficiency in European 
airlines' financial performance. Lee et al. (2019) also 
included asset turnover in their operational and financial 
performance analysis post-IPO. 

Beta 

Beta measures a stock's volatility or systematic risk 
relative to the overall market. A beta of 1 indicates 
that the stock moves in line with the market; 
greater than 1 indicates higher volatility and less 
than 1 indicates lower volatility (Fama and French, 
1992). 

Alici & Sevil (2022) analyzed the Beta of airline stocks as 
a measure of volatility and its relation to operational 
efficiency, further linking it to stock price movement.  

Net Profit 
Margin, % 

Measures the profit generated per dollar of sales 
(operating revenues). Formula: Net Profit Margin = 
Net Profit/ Net Sales (Operating Revenues). A 
higher ratio indicates greater efficiency in 
generating profits from revenues and controlling 
expenses (Subramanyam and Wild, 2014). 

Yılmaz & Köse (2023) identified net profit margin as a 
significant determinant of profitability in the airline 
industry, highlighting the influence of internal and 
external factors. Pamungkas & Suhadak (2017) explored 
how jet fuel prices and macroeconomic variables impact 
net profit margins in the Asian airline sector. 

Number 
of Planes, 
Prd-Prd 
Diff 

This refers to the difference in the number of 
planes (fleet size) operated by an airline between 
two consecutive periods (Zou et al., 2015). 

Lopes & Beuren (2017) examined the influence of fleet 
size changes (number of planes, Prd-Prd Diff) on 
operational efficiency, linking it to cost behavior in 
Brazilian airline companies.  
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Following Table 2, the selected variables were chosen 
to provide a balanced assessment of operational and 
financial factors crucial to airline performance. Return on 
Assets (ROA) and Net Profit Margin were key profitability 
indicators, highlighting how effectively airlines utilize 
assets and control costs to generate income. ROA is 
particularly relevant in the asset-intensive aviation sector, 
offering a clear measure of asset management efficiency. 
Liquidity ratios, including the Quick Ratio and Current 
Ratio, were selected to evaluate the ability to meet short-
term financial obligations, a critical factor in maintaining 
stability during economic fluctuations. The Debt-to-Assets 
Ratio was included to assess financial leverage and long-
term solvency, while Asset Turnover was chosen to 
measure how effectively revenue is generated relative to 
assets. Although other indicators, such as Return on 
Equity (ROE), were considered, ROA was prioritized for its 
direct relevance to operational efficiency. The variables 
were selected based on their relevance to airline 
operations, prevalence in prior literature, and ability to 
collectively provide a comprehensive view of financial 
health and operational efficiency. 

The preservation of data integrity is of paramount 
importance. The application of interpolation techniques 
maintains the continuity and integrity of datasets by 
estimating missing values based on known data points, 
thus preventing abrupt changes that could mislead 
analyses (Arp et al., 2022; Huang, 2021). In this study, 
linear interpolation was performed using the ‘interpolate’ 
method from the pandas library (McKinney, 2010). This 

method estimates missing values by fitting a straight line 
between adjacent data points, ensuring a seamless 
integration of missing values into the dataset while 
maintaining data trends and consistency. This process 
enhances the precision of statistical models and analytical 
procedures by incorporating missing values. For example, 
linear interpolation has been demonstrated to optimize 
the performance of models such as ARIMA and 
multivariate regression, resulting in more accurate 
predictions and reduced errors (Xu & E, 2020). 

To ensure the integrity and continuity of the time-
series data, interpolation was selected as the preferred 
method for handling missing values. Interpolation is 
particularly effective in maintaining the consistency of 
trends over time, which is essential for time-series 
analysis. After cleaning, the individual datasets for each of 
the 65 airlines were aggregated into a single unified 
dataset. A "Company" identifier was introduced as a 
categorical variable for company-specific factors. This 
addition ensures that the model can distinguish between 
different airlines and capture any variations in 
performance or stock price trends unique to each 
company. This aggregation allowed for constructing a 
panel dataset, combining cross-sectional and time-series 
data, facilitating more comprehensive analyses across 
both dimensions. 

Descriptive statistics for the dataset are shown in 
Table 3, highlighting the robust structure and integrity of 
the data used in this study.  

 
Table 3. Descriptive Statistics 

Variable Mean Std Dev Min 25% 50% 75% Max 

Beta 1,226 0,597 -0,192 0,798 1,169 1,563 3,398 

Asset Turnover 0,668 0,329 0,055 0,438 0,642 0,841 2,214 

Return On Assets  0,012 0,086 -0,531 -0,019 0,030 0,063 0,196 

Net Profit Margin, (%) -0,04 2,112 -29,73 -0,060 0,030 0,078 40,30 

Tot Debt/Tot Assets 0,456 0,260 0,000 0,311 0,433 0,578 3,480 

Current Ratio 0,850 0,463 0,010 0,516 0,781 1,078 2,975 

Quick Ratio 0,790 0,443 0,010 0,470 0,713 1,013 2,676 

Combined Alpha Model 
Rank 

53,41 32,22 1,000 23,000 57,00 82,00 100,00 

Passenger Load Factor 0,787 0,105 0,133 0,764 0,816 0,843 0,960 

Number of Planes, Prd-
Prd Diff 

8,348 33,06 -250,0 0,000 6,000 17,00 317,00 

Total Revenue per ASM 
(USD) 

0,135 0,097 0,000 0,097 0,121 0,148 1,915 

Price Close (USD) 20,24 68,02 0,004 0,722 3,603 18,98 986,99 
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Catboost Model 
CatBoost CatBoost is an advanced implementation of 

gradient boosting on decision trees designed to handle 
categorical features efficiently and mitigate prediction 
biases. Unlike traditional gradient boosting models, 
CatBoost introduces innovative mechanisms like ordered 
boosting and specialized categorical feature handling to 
address issues of target leakage and prediction shift 
(Prokhorenkova et al., 2019) 

CatBoost improves efficiency and reduces sensitivity 
to noise in target variables by discretizing continuous 
targets into quantized categories. This approach enhances 
the model’s stability during training and minimizes 
overfitting risks (Prokhorenkova et al., 2019). Similar 
mechanisms are employed in related frameworks like 
LightGBM, which utilizes gradient-based one-side 
sampling (GOSS) to prioritize instances with large 
gradients, achieving comparable improvements in 
computational efficiency (Ke et al., 2017) 

The model’s automated handling of categorical 
features eliminates the need for extensive preprocessing, 
streamlining the modeling pipeline. CatBoost uses 
ordered target encoding, which assigns unique numerical 
representations to categorical variables based on 
historical data without introducing target leakage. This 
approach aligns with methods like target statistics in other 
gradient boosting frameworks but incorporates 
permutations to ensure data consistency (Prokhorenkova 
et al., 2019; Dorogush et al., 2018) 

CatBoost incorporates intrinsic feature prioritization 
through its tree-based structure, automatically selecting 
the most relevant features during training. Similarly, 
LightGBM employs a gradient-based split criterion to 
dynamically adjust feature relevance across iterations, 
showcasing a shared emphasis on optimizing feature 
utilization (Ke et al., 2017; Prokhorenkova et al., 2019) 

CatBoost’s automation of preprocessing tasks, such as 
encoding categorical variables and handling missing data, 
is another key feature. CatBoost’s tree-based structure 
inherently handles numerical data magnitudes, unlike 
methods that require normalization or scaling. This 
characteristic simplifies preprocessing while preserving 
model performance. LightGBM similarly accelerates 
training processes through feature bundling techniques, 
such as exclusive feature bundling (EFB), which groups 
sparse features into bins to optimize computational 
efficiency (Ke et al., 2017) 

By leveraging these techniques, CatBoost strives to 
balance performance and interpretability, making it a 
strong candidate for handling heterogeneous and noisy 
datasets. Its focus on automating preprocessing, reducing 
prediction bias, and improving computational efficiency 
positions it as a promising solution for addressing complex 
machine learning challenges. 

 
Modeling Process 
In building the predictive model, CatBoost was 

selected due to its superior handling of categorical 
features without requiring extensive preprocessing. 
CatBoost employs an innovative algorithm that prevents 
prediction shifts caused by target leakage, making it highly 
effective in dealing with categorical data (Panigrahi et al., 
2022). One of its main advantages is its ability to 
automatically manage categorical features and missing 
values during training, rather than relying on 
preprocessing, which streamlines the overall modeling 
process (Zhao et al., 2021). 

The initial CatBoost model was trained with the default 
hyperparameters. The results from the baseline model are 
summarized in Table 4, which reports the mean squared 
error (MSE), mean absolute error (MAE), and mean 
absolute percentage error (MAPE). These metrics are 
critical for evaluating the model’s overall performance. 

The MSE measures the quality of a model by 
calculating the average squared difference between 
predicted and actual values. It evaluates how close 
predictions are to the observed outcomes and is 
minimized by the regression function, which provides the 
best fit for squared error. The MAE measures the average 
absolute difference between predictions and actual 
values, offering a more straightforward and interpretable 
error assessment by focusing on the magnitude of 
discrepancies without squaring them. The MAPE 
evaluates the average percentage difference between 
predicted and actual values, making it particularly useful 
for comparing errors across different scales or datasets. 
MAPE normalizes errors relative to the actual values, 
emphasizing relative accuracy rather than absolute 
differences (De Myttenaere et al., 2016). 

The current model configuration, summarized in Table 
2, characterized by a depth of 6, L2 leaf regularization of 
3, and a learning rate of 0.06, demonstrates a balance 
between model complexity, regularization to mitigate 
overfitting, and stability in learning. MSE of 285.79 
suggests that the squared prediction errors are notable, 
indicating some variability in model accuracy. MAE of 9.42 
points to an average prediction deviation of 9.42 units, 
which provides a more interpretable measure of 
performance but also signals room for potential 
improvement. MAPE of 4.7% suggests that, on average, 
predictions deviate by 4.7% from actual values, indicating 
relatively strong performance in terms of proportional 
accuracy. While these results demonstrate reasonable 
effectiveness, particularly in percentage-based metrics, 
the magnitude of absolute errors suggests opportunities 
for further optimization. 

 
Table 4. Baseline Model Results 

depth l2 leaf reg Learning rate MSE MAE MAPE 
6 3 0,06 285,788057 9,42244375 4,7034661 
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Table 5. Hyperparameter Search Space 

Hyperparameter Values 

Depth [4, 6, 8] 
Learning Rate [0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1] 
L2 Leaf Reg [1, 3, 5] 

 
After performing hyperparameter tuning, the following hyperparameters were found to yield better results: 
 

Table 6. Optimized Model Results 

depth l2 leaf reg Learning rate MSE MAE MAPE 

8 5 0,02 281,7407 9,383539 3,107654 
 

Hyperparameter Tuning 
Hyperparameter tuning was employed to explore multiple 

combinations of key parameters efficiently and enhance the 
predictive capabilities of the CatBoost model. The primary 
hyperparameters tuned included the learning rate, L2 leaf 
regularization, and tree depth. Each parameter is critical in 
balancing model complexity, generalization, and convergence. 

The learning rate determines the magnitude of model 
parameter updates during training. Proper tuning is essential, 
as a meager learning rate can lead to slow convergence, while 
a high learning rate risks divergence from the optimal solution 
(Konar et al., 2020). A smaller learning rate allows the model 
to converge more gradually, exploring the solution space in 
finer increments, thereby improving generalization. However, 
this approach often requires an increase in the number of 
iterations to achieve satisfactory performance. In contrast, a 
larger learning rate accelerates convergence but may 
overshoot the optimal solution, degrading model 
performance. CatBoost recommends a smaller learning rate 
combined with more iterations for most tasks to achieve a 
stable and accurate model (Dorogush et al., 2017). 

L2 leaf regularization, controlled by 
the l2_leaf_reg parameter, is applied to penalize large leaf 
weights in the decision trees. This constraint smooths 
predictions by encouraging the model to focus on general 
patterns rather than dataset-specific nuances, thereby 
reducing the risk of overfitting (Satter et al., 2023). Larger 
values of L2 regularization strengthen this effect, improving 
generalization on noisy datasets, but excessively high values 
may lead to underfitting. Optimal tuning of this parameter 
involves a trade-off between bias and variance, typically 
achieved through experimentation and cross-validation 
(Dorogush et al., 2017). Additionally, CatBoost's use of 
"oblivious trees" (where all nodes at the same level test the 
same feature) enhances regularization effects, improving 
efficiency and robustness. 

The depth of the decision trees, determined by the depth 
parameter, controls the model's complexity and ability to 
capture feature interactions. A greater depth allows the model 
to represent more intricate patterns in the training data, which 
can improve performance on complex datasets. However, 
deeper trees also increase the risk of overfitting, mainly when 
training data contains noise or has limited samples (Astrup et 
al., 2008). Conversely, a smaller depth leads to simpler trees 
that may generalize better but risk underfitting the training 
data. Striking the right balance in tree depth is crucial, as it 
depends on the dataset's complexity. CatBoost defaults to a 
depth of 6, often serving as a practical starting point for many 
tasks (Dorogush et al., 2017). 

The hyperparameter tuning search space was defined in 
Table 5: 

As seen in Table 6, the optimized model configuration, with 
a depth of 8, L2 leaf regularization of 5, and a reduced learning 
rate of 0.02, reflects an approach aimed at enhancing the 
model's performance through more complex representation, 
stronger regularization, and finer-grained updates during 
training. MSE of 281.74 indicates a slight improvement in the 
average squared prediction error compared to the initial 
configuration, suggesting better precision in some predictions. 
MAE of 9.38 represents a modest reduction in the average 
absolute error, implying an incremental improvement in 
overall prediction accuracy. Notably, MAPE has decreased to 
3.11%, reflecting a substantial enhancement in the model's 
proportional accuracy and effectiveness in capturing relative 
differences. These results suggest that the hyperparameter 
adjustments have improved predictive performance, 
particularly in percentage-based evaluations while 
maintaining reasonable absolute error metrics. This highlights 
the model's increased reliability in predicting stock prices 
across diverse companies. 

 
SHAP (SHapley Additive exPlanations) 
SHAP (SHapley Additive exPlanations) enhances the 

interpretability of machine learning models, addressing the 
need for transparency in AI systems. SHAP is a robust 
framework for interpreting machine learning models, 
grounded in game theory. It applies to the SHAP value concept, 
a measure from cooperative game theory, to attribute the 
contribution of individual features to model predictions in a 
mathematically sound and interpretable manner (Lundberg & 
Lee, 2017). 

The SHAP value quantifies a feature's contribution by 
evaluating its marginal impact on the prediction. This involves 
calculating the difference in the model's output with and 
without the feature across all possible subsets of features that 
exclude the one being analyzed. This comprehensive approach 
ensures that the feature's influence is contextualized relative 
to all potential feature combinations (Lundberg & Lee, 2017). 

To achieve a fair allocation of contributions, the 
computation incorporates: 
 Subset Evaluation: Marginal contributions are 

determined by treating subsets of features as coalitions 
and comparing model outputs with and without the 
feature for each subset. 

 Permutational Averaging: Contributions are averaged 
over all permutations of feature orderings, guaranteeing 
that the evaluation sequence does not influence the 
results. 
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 Combinatorial Weighting: Each subset's influence is 
scaled based on its size relative to the total feature set, 
ensuring a proportional representation of the feature's 
impact. 

While this approach is rigorous, calculating exact SHAP 
values involves factorial computational complexity, which 
limits scalability for datasets with many features. To address 
this, SHAP incorporates model-specific optimizations, such as 
tailored algorithms for tree-based models and neural 
networks, to enhance efficiency. For general models, 
techniques like Kernel SHAP use local approximations to 
estimate contributions while preserving theoretical integrity 
(Lundberg & Lee, 2017). 

SHAP’s foundation in fairness and consistency makes it a 
cornerstone of explainable AI, particularly valued for its ability 
to provide transparent feature attributions. However, practical 
challenges remain, particularly in managing computational 
demands for high-dimensional data (Lundberg & Lee, 2017). 

 
Feature Importance 
Feature importance helps interpret machine learning 

models by quantifying the contribution of each feature to the 
model's predictions. However, traditional methods like gain, 
commonly used in tree-based models, must be more 
consistent and reliable in specific contexts (Nohara et al., 
2021). This inconsistency can lead to misleading 
interpretations of the model’s behavior, especially when 
dealing with complex datasets. 

To address these issues, Lundberg et al. (2018) proposed 
SHAP values, which offer a more robust and consistent 
approach to feature importance. SHAP values are grounded in 
game theory and provide a unified framework for local 
explanations by considering all possible feature combinations 
and their marginal contributions to the outcome. This method 
ensures that feature importance is calculated fairly and 
consistently, making it easier to interpret the impact of each 
variable on the model's predictions. SHAP is particularly 
valuable for high-stakes industries, such as aviation, where 
accurate interpretability of models is essential for decision-
making. 

The SHAP decision plot provides an in-depth visualization 
of how individual feature values contribute to a single 
prediction, offering valuable insights into the model's behavior 
for specific companies. It effectively allows analysts to explore 
the influence of different variables on the model’s predictions, 
enhancing interpretability. 

In Figure 1, the Y-axis lists the features, ranked by their 
importance in the model. Features higher on the axis impact 
the model's predictions more. For instance, the company 
variable is the most significant feature, followed by Total 
Revenue per ASM, Passenger Load Factor, and other features. 
On the X-axis, SHAP values represent the influence of each 
feature on the model’s output, such as stock price predictions. 
Positive SHAP values indicate that a feature increases the 
prediction, pushing it higher, while negative SHAP values 
suggest that the feature lowers the prediction. 

Another critical aspect of the decision plot is the color bar, 
which visually represents the feature values. Red points 
indicate higher feature values, while blue points represent 
lower values. This color scheme helps quickly identify feature 
values' impact on the model's predictions. For example, high 
values of Total Revenue per ASM, represented in red, generally 
push the model's output higher, while lower values (in blue) 
tend to decrease it. Similarly, higher values increase the 
predicted output for the Passenger Load Factor, and lower 
values reduce it. 

Some features, such as Total Debt to Total Assets and 
Current Ratio, exhibit a more complex relationship with the 
model's target variable. Their high or low values can influence 
the predictions in either direction, indicating that their impact 
is more complex. In contrast, the Net Profit Margin 
demonstrates a more precise pattern, where higher values 
(red) push the prediction upward, while lower values (blue) 
decrease the predicted outcome. 

The SHAP summary, shown in Table 7, plot shows how 
each feature contributes to the model's predictions. Features 
at the top, like Company and Total Revenue per ASM (USD), 
are the most influential. The colors indicate how feature values 
interact with SHAP values and help understand whether high 
or low feature values drive higher or lower predictions. 

 

 

Figure 1. SHAP Values 
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Table 7. Model Importance Values 

Feature Importance % 

Company 30,899796 
Total Revenue per ASM (USD) 28,454733 
Passenger Load Factor 15,601517 
Quick Ratio 5,530049 
Current Ratio 4,610544 
Tot Debt/Tot Assets, % 4,498126 
Return On Assets  2,944894 
Asset Turnover 2,659982 
Beta 2,306306 
Net Profit Margin, (%) 1,358261 
Number of Planes, Prd-Prd Diff 1,135791 

 

 

Figure 2. Model Importance Across Companies 

 
This section examines the importance of features 

derived from the machine learning model in predicting 
airline stock prices. By leveraging SHAP values, we can 
quantify each feature's contribution to the model's 
predictions, offering a transparent view of how 
operational and financial metrics influence stock prices in 
the aviation industry. Additionally, a feature importance 
heatmap provides a granular breakdown of how these 
variables impact individual airlines. 

The Company variable is the most influential feature, 
with an importance value of 30.90%. This highlights 
substantial airline stock price behavior variations driven 
by management strategies, market conditions, and 
operational practices. These company-specific differences 
underscore the need for granular analysis, as internal and 
external factors unique to each airline significantly impact 
stock performance. 

Total revenue per ASM and passenger load factor are 
critical indicators of revenue generation and operational 
efficiency, with values of 28.45% and 15.60%, 
respectively. Revenue per ASM reflects an airline's ability 
to maximize earnings relative to its seating capacity, 

signaling strong financial and operational health. Similarly, 
high passenger load factors indicate efficient fleet 
utilization, directly contributing to profitability and robust 
stock performance. These metrics collectively emphasize 
that operational success is pivotal in determining stock 
prices. 

Financial health metrics assess short-term liquidity 
and stability, particularly the Quick Ratio (5.53%) and 
Current Ratio (4.61%). The Quick Ratio's focus on 
immediate financial solvency is especially valuable during 
economic uncertainty, while the Current Ratio offers a 
broader perspective on financial resilience. These 
indicators highlight the importance of liquidity 
management in an industry prone to cash flow volatility 
and external disruptions. 

Debt-to-Assets Ratio (4.50%) reflects that debt 
management plays a moderate role. While debt can fuel 
growth and expansion, excessive reliance on borrowing 
introduces financial risk, affecting investor confidence. 
This suggests a nuanced impact, where the context of 
debt levels and operational success determines its effect 
on stock prices. 
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Supporting metrics such as ROA (2.94%), Asset 
Turnover (2.66%), and Net Profit Margin (1.36%) provide 
insights into profitability and asset utilization. Although 
these metrics contribute to understanding financial 
health, their lower importance than liquidity and 
operational efficiency suggests that investors prioritize 
revenue generation and financial stability over short-term 
profitability. 

Market risk, represented by Beta (2.31%), holds a 
minor yet notable role. While Beta informs on stock price 
volatility, its relatively low importance indicates that 
aviation investors focus more on operational and financial 
fundamentals than market risk. 

Finally, the Number of Planes (Prd-Prd Diff) has the 
least impact (1.14%). While fleet size changes reflect 
strategic decisions, they are overshadowed by more 
immediate factors like revenue generation, operational 
efficiency, and financial stability. 

In Figure 2, the feature importances for individual 
companies reveal insightful patterns regarding the 
predictive power of various metrics. Among these, 
operational efficiency indicators such as Total Revenue 
per ASM (Available Seat Mile) and Passenger Load Factor 
emerge as dominant features for several companies. 
These metrics indicate how effectively airlines manage 
their capacity and revenue generation, and they are 
essential for companies like Gol Linhas Aéreas Inteligentes 
and El Al Israel Airlines Ltd. The prominence of these 
features underscores the central role that efficient 
capacity utilization and revenue management play in 
predicting stock price movements for these firms. Such 
insights highlight the strong relationship between 
operational performance and financial outcomes in the 
aviation sector. 

In addition to operational metrics, financial health 
indicators, particularly liquidity ratios like the Current 
Ratio and Quick Ratio, are shown to be highly influential 
for other companies such as InterGlobe Aviation Ltd. and 
Gol Linhas Aéreas Inteligentes. These features suggest 
that short-term financial stability is crucial for investors 
when assessing stock price performance. Liquidity ratios 
provide a snapshot of a company's ability to meet its 
short-term liabilities, which likely informs investor 
confidence and risk perception. The fact that such 
financial health metrics are more critical for some 
companies than others reflects the aviation sector's 
varying business models and financial structures. 

The analysis also reveals a nuanced landscape where 
the importance of specific features varies across 
companies. For instance, while the Passenger Load Factor 
is crucial for predicting stock performance in SpiceJet Ltd, 
it holds significantly less weight for El Al Israel Airlines Ltd. 
This variation suggests that certain companies may 
depend more heavily on operational metrics, such as how 
efficiently they manage seat occupancy. In contrast, 
others may rely more on financial health or asset 
management indicators. This company-specific variation 
in feature importance suggests that different strategic 

priorities drive stock price performance across the 
aviation industry. 

Overall, the analysis indicates that operational 
efficiency—mainly revenue per ASM and Passenger Load 
Factor—plays a critical role in stock price prediction for 
many companies within the aviation sector. This finding 
suggests that investors highly value airlines' ability to 
maximize asset utilization and revenue generation. At the 
same time, financial health metrics, particularly liquidity 
ratios, also hold substantial importance for specific 
companies, signaling that the ability to meet short-term 
obligations is a crucial factor influencing investor 
sentiment. The heterogeneity in feature importance 
across companies emphasizes the need for tailored 
strategies when analyzing stock performance, as some 
firms may prioritize operational efficiency. In contrast, 
others focus on maintaining financial stability. This 
complexity underscores the diverse drivers of stock price 
performance in the aviation sector, reflecting a blend of 
operational and financial considerations. 

 
Discussion 
This study aimed to explore how operational and 

financial efficiency metrics impact stock prices in the 
aviation industry. The results from the machine learning 
model indicate that operational efficiency, particularly 
Total Revenue per Available Seat Mile (ASM) and 
Passenger Load Factor, significantly influences stock 
prices. Financial metrics, such as the Quick Ratio and Debt-
to-Assets Ratio, also play a role, though their influence is 
secondary to operational factors. The prominence of 
operational efficiency in predicting stock prices suggests 
that airlines' ability to maximize revenue generation and 
asset utilization is a crucial determinant of their market 
performance. This finding aligns with the research 
question, confirming that operational and financial health 
are essential, but operational efficiency provides a 
stronger, more immediate signal to the market. 

The choice of the CatBoost model in this study 
provided a significant advantage in handling categorical 
variables and managing missing data without extensive 
preprocessing. CatBoost's inherent ability to minimize 
prediction shifts caused by target leakage ensured a 
robust training process, mainly when dealing with 
heterogeneous and multivariate datasets typical of the 
aviation industry. This feature made it well-suited for 
analyzing stock price determinants, where operational 
and financial metrics often vary in structure and scale. 
Moreover, the model's hyperparameter tuning—focusing 
on depth, L2 leaf regularization, and learning rate—
improved prediction accuracy, reducing MSE and MAPE in 
the optimized model compared to the baseline. The 
tuning process demonstrated that a balanced 
combination of tree depth (8), regularization (5), and a 
learning rate (0.02) delivered the most accurate 
predictions with lower prediction errors, enhancing the 
model's reliability in identifying the critical drivers of stock 
price performance. 
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The interpretability of the CatBoost model, 
augmented by SHAP values, further validated its relevance 
in this context. SHAP analysis revealed that key 
operational metrics such as Total Revenue per ASM and 
Passenger Load Factor influenced predictions most. In 
contrast, financial metrics like Quick Ratio and Debt-to-
Assets Ratio played complementary roles. This aligns with 
previous literature emphasizing operational efficiency as 
a major driver of stock prices but adds an essential layer 
of transparency to the model's predictions. The 
visualization of SHAP values clarified individual feature 
contributions and facilitated company-specific insights, 
demonstrating the flexibility and utility of the CatBoost 
model in complex, real-world scenarios. 

The study also relates to the Efficient Market 
Hypothesis (EMH), particularly its semi-strong form, which 
posits that stock prices reflect all publicly available 
information. The findings suggest that operational and 
financial metrics are indeed integrated into stock prices, 
providing support for the semi-strong form of EMH. 
However, the study's ability to identify specific metrics, 
such as Total Revenue per ASM and Passenger Load 
Factor, as dominant predictors raises questions about 
whether all publicly available information is equally 
weighted or efficiently processed by the market. While 
the results do not explicitly challenge EMH, they suggest 
that machine learning models can extract nuanced 
patterns from operational and financial data, potentially 
uncovering inefficiencies or underutilized information. 
This perspective complements existing discussions in 
finance about the degree of market efficiency and 
highlights the need for further research to determine 
whether these insights represent true inefficiencies or are 
within the bounds of market behavior under EMH. 

The findings of this study align with prior research 
emphasizing the critical role of operational efficiency in 
influencing stock price performance. Studies by Alici and 
Sevil (2022) and Labantová and Begera (2014) highlight a 
positive correlation between higher operational metrics, 
such as Revenue Passenger Kilometers and Load Factor, 
and stock prices. This study extends these findings using 
machine learning to demonstrate that operational 
metrics, mainly revenue per ASM, remain dominant 
predictors in a more complex, data-driven framework. 
However, the results diverge from those of (Yadav & 
Goriet, 2022; Yilmaz & Köse, 2023), who emphasized 
external factors like macroeconomic conditions and 
regulatory influences as primary drivers of stock prices. 
This study emphasizes company-specific operational and 
financial performance, suggesting that internal metrics 
may play a more significant role in determining stock 
valuation in the aviation sector, although macroeconomic 
factors remain relevant. 

The study's findings carry important implications for 
both investors and airline management. For investors, 
operational efficiency metrics, such as Total Revenue per 
ASM and Passenger Load Factor, provide valuable insights 
into stock performance and should be prioritized when 
assessing aviation stocks. The significance of these metrics 

indicates that airlines that optimize revenue generation 
and fleet utilization are better positioned for favorable 
stock price performance, making these critical areas for 
investment analysis. The results suggest that maintaining 
operational efficiency is crucial for ensuring positive 
market responses for airline management. The 
importance of liquidity, reflected by metrics such as the 
Quick Ratio, underscores the need for airlines to manage 
short-term obligations effectively to maintain investor 
confidence, especially during volatile economic periods. 
These findings highlight the significance of focusing on 
internal efficiency to bolster market value and financial 
stability. 

This study contributes to the existing literature by 
introducing a machine learning framework that aims to 
improve the accuracy of stock price prediction while 
offering more interpretable insights through SHAP values. 
Previous studies, such as those by Amankwah-Amoah 
(2018), & Singh et al., (2019), explored operational and 
financial efficiency but often relied on traditional 
statistical methods, which limited their predictive power 
and interpretability. This study addresses this gap by 
showing that machine learning models, combined with 
SHAP analysis, can offer a more nuanced understanding of 
how specific operational and financial metrics influence 
stock prices. The research advances the literature by 
providing a transparent, data-driven approach that 
investors and management can use to assess the 
performance of airlines, addressing a critical need for 
interpretability in machine learning-based financial 
models. 

While this study provides valuable insights, it has 
limitations. First, the dataset covers only 65 aviation 
companies from 2015 to 2023, which may limit the 
generalizability of the findings to airlines operating in 
different economic environments or geographical regions. 
Expanding the dataset to include a broader range of 
airlines or extending the time frame could enhance the 
robustness of the results. Second, the model primarily 
focuses on internal operational and financial metrics, 
leaving external factors such as fuel prices, geopolitical 
risks, and regulatory changes that must be explored. 
Future research could incorporate these external 
variables to develop a more comprehensive model that 
captures both internal and external influences on stock 
prices. This study does not examine potential interactions 
between operational and financial metrics. Investigating 
these interactions in future research could provide deeper 
insights into how operational performance and financial 
health jointly influence stock prices. 

Lastly, while the machine learning model offers solid 
predictive capabilities, it inherently relies on historical 
data. As a result, its ability to anticipate future market 
disruptions, such as sudden economic shocks or industry-
wide regulatory changes, may be limited. Future studies 
should explore incorporating real-time data or developing 
models that can adapt to changing market conditions to 
enhance predictive accuracy in the aviation sector further. 
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Conclusion 
This study aimed to examine the influence of operational 

and financial efficiency on aviation stock prices using a 
machine learning model—specifically CatBoost enhanced by 
SHAP interpretability. The findings suggest that operational 
metrics such as Total Revenue per ASM and Passenger Load 
Factor may be among the most influential factors in 
predicting stock prices, potentially surpassing financial 
metrics like the Quick Ratio and Debt-to-Assets Ratio. These 
results indicate that, in this study, aviation investors might 
prioritize operational efficiency over short-term financial 
performance when evaluating stock value. Airlines with 
higher revenue generation per available seat mile and 
optimized fleet utilization tend to see favorable stock market 
performance. At the same time, liquidity and debt 
management are also considered necessary, albeit 
secondary, factors. The findings from this study highlight the 
potential significance of operational efficiency and financial 
health for airline management aiming to maintain or 
enhance stock price performance. 

The research addressed the question: How do 
operational and financial efficiency metrics impact airlines' 
stock prices? The primary objective was to develop a 
predictive model that could accurately forecast stock prices 
based on a combination of these metrics, offering insights 
into the most influential factors. Additionally, the study 
sought to interpret the model's predictions using SHAP 
values to provide transparent explanations of how different 
metrics contribute to stock price fluctuations. This research 
achieved these objectives by showing that operational 
efficiency plays a significant role in stock price performance 
and that machine learning, coupled with SHAP, can provide 
meaningful, interpretable insights into stock price prediction. 

This study makes several contributions to finance and 
operational efficiency, particularly in the aviation sector. 

First, it introduces a machine learning model that aims to 
improve the accuracy of stock price prediction and offers 
transparency through SHAP values, addressing a shared 
concern about the opacity of machine learning models. 
Second, the study adds to the growing body of literature 
highlighting the potential importance of operational 
efficiency in stock market performance, providing empirical 
evidence that operational metrics may be more influential 
than financial ones in driving stock prices in the aviation 
industry. Third, by focusing on operational and financial 
metrics, this study bridges a gap in the literature, offering a 
more comprehensive understanding of how these two 
domains influence stock prices. Finally, the study offers 
practical insights for investors and airline management by 
highlighting specific operational and financial metrics that 
could be important for improving stock performance. 

While this study provides valuable insights, several 
avenues for future research could enhance the 
understanding of stock price determinants in the aviation 
industry. Future studies could expand the dataset to include 
a broader range of airlines and extend the analysis to 
different economic conditions, regions, or business models, 
such as low-cost versus full-service carriers. This would 
provide a more comprehensive understanding of how these 
factors influence stock prices across different market 
contexts. Additionally, incorporating external 
macroeconomic factors such as oil prices, interest rates, and 
geopolitical risks could provide a more holistic view of the 
forces driving stock price movements. Future studies could 
also explore the interactions between operational and 
financial metrics, examining how these variables jointly 
influence stock prices. Lastly, incorporating real-time data 
and developing models that adapt to sudden economic shifts 
could enhance predictive accuracy and relevance in volatile 
market conditions. 
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