COEFFICIENT ESTIMATES FOR BI-CONCAVE FUNCTIONS

F. MÜGE SAKAR AND H. ÖZLEM GÜNEY

Abstract

In this study, a new class $\mathcal{C}_{\Sigma}^{p, q}(\alpha)$ of analytic and bi-concave functions were presented in the open unit disc. The coefficients estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ were found for functions belonging to this class.

1. Introduction, Preliminaries and Definition

The knowledge on bi-concave univalent functions is based on univalent, concave and bi-univalent funcions respectively. Therefore, a brief summary of these functions and related references are given in this section.

Lets take \mathbb{C} as the complex numbers and \mathbb{R} as the set of real numbers. Then open unit disk can be denoted by \mathbb{D} and extended complex plain are denoted by $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. Let \mathcal{A} indicate the class of analytic functions in the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ given in the following form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

All the normalized analytic function classes \mathcal{A} which are univalent in \mathbb{D} are also represented by \mathcal{S}. An univalent function $f: \mathbb{D} \rightarrow \overline{\mathbb{C}}$ is called to be concave when $f(\mathbb{D})$ is concave, i.e. $\overline{\mathbb{C}} \backslash f(\mathbb{D})$ is convex.

Concave univalent functions have already been studied in detailed by several authors (see $[1,2,3,4,7]$).

A function $f: \mathbb{D} \rightarrow \mathbb{C}$ is called to be a member of concave univalent functions with an opening angle $\pi \alpha, \alpha \in(1,2]$, at infinity if f holds the conditions given below:
(i) f is analytic in \mathbb{D} which has normalization condition $f(0)=0=f^{\prime}(0)-1$. Additionaly, f fulfills $f(1)=\infty$.

Received by the editors: February 10, 2017, Accepted: October 13, 2017.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic, bi-concave functions, analytic function, univalent function, bi-univalent function, concave function.
(ii) f maps \mathbb{D} conformally onto a set whose complement in accordance with \mathbb{C} is convex.
(iii) The opening angle of $f(\mathbb{D})$ at infinity is equal to or less than $\pi \alpha, \alpha \in(1,2]$.

Lets indicate the class of concave univalent functions of order β by $C_{\beta}(\alpha)$.
The analytic characterization for functions in $C_{\beta}(\alpha)$ are as follows :
For $\alpha \in(1,2]$ and $\beta \in[0,1), f \in C_{\beta}(\alpha)$ if and only if

$$
\begin{equation*}
\Re P_{f}(z)>\beta, \quad \forall z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

for

$$
P_{f}(z)=\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \quad \text { and } \quad f(0)=0=f^{\prime}(0)-1 .
$$

Especially, for $\beta=0$, we can obtain the class of concave univalent functions $C_{0}(\alpha)$ which was studied in [3].

The closed set $\overline{\mathbb{C}} \backslash f(\mathbb{D})$ is convex and unbounded for $f \in C_{0}(\alpha), \alpha \in(1,2]$. $\forall f \in C_{\beta}(\alpha)$ has the Taylor expansion given by the following form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad|z|<1
$$

For all $f \in \mathcal{S}$, the Koebe $1 / 4$ theorem [8] confirms that the image of \mathbb{D} under all univalent function $f \in \mathcal{S}$ covers a disk of radius $1 / 4$. Hence, each $f \in \mathcal{A}$ has f^{-1}, which is described by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{D})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

If $f(z)$ is univalent in \mathbb{D} and $g(w)=f^{-1}(w)$ is univalent in $\{w:|w|<1\}$, then the function f belongs to analytic function is known to be bi-univalent in \mathbb{D}. If $f(z)$ given by (1.1) is bi-univalent, then $g=f^{-1}$ can be arranged in the form of Taylor expansion given

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\ldots \tag{1.3}
\end{equation*}
$$

So, $f \in \mathcal{A}$ is called to be bi-univalent in \mathbb{D} if each of f and f^{-1} are univalent in \mathbb{D}. Also, a function f is bi-concave if both f and f^{-1} are concave.

Some properties of bi-convex, bi-univalent and bi-starlike function classes have already been investigated by Brannan and Taha [6]. Furthermore, an estimation of $\left|a_{2}\right|$ and $\left|a_{3}\right|$ was found by Bulut [5] for bi-starlike functions. Our results found for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are related to a different class, so called bi-concave functions.

Lets denote Σ as the class of all bi-univalent functions in the unit disk \mathbb{D}. Lewin [10] investigated Σ and showed that $\left|a_{2}\right|<1.51$ for the function $f(z) \in \Sigma$. Also, several researchers obtained the coefficients boundary for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of bi-univalent
functions for the some subclasses of the class Σ in references [9,11,12]. In addition, certain subclasses of bi-univalent functions, and also univalent functions consisting of strongly starlike, starlike and convex functions were studied by Brannan and Taha [6] . They investigated bi-convex and bi-starlike functions and also investigated some properties of these classes.

Now, we define the definition of bi-concave functions as follows:
Definition 1.1. The function $f(z)$ in (1.1) is known to be $\sum_{C_{\beta}(\alpha)},(1<\alpha \leq 2)$ if the conditions given below are fulfilled: $f \in \Sigma$,

$$
\begin{equation*}
\Re\left\{\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right\}>\beta \quad, z \in \mathbb{D} \text { and } 0 \leq \beta<1 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left\{\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1-w}{1+w}-1-\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right]\right\}>\beta \quad, w \in \mathbb{D} \text { and } 0 \leq \beta<1 \tag{1.5}
\end{equation*}
$$

where the g is given in (1.3). In the other words, $\sum_{C_{\beta}(\alpha)}$ is the class of bi-concave functions order β.

We introduce the following subclass of the analytic functions class \mathcal{A}, analogously to the definition given by Xu et al. [13].

Definition 1.2. Lets define the functions $p, q: \mathbb{D} \rightarrow \mathbb{C}$ satisfying the following condition

$$
\min \{\Re(p(z)), \Re(q(z))\}>0 \quad(z \in \mathbb{D}) \text { and } p(0)=q(0)=1
$$

In addition let f, in (1.1), be in \mathcal{A}. Then, $f \in \mathcal{C}_{\Sigma}^{p, q}(\alpha),(1<\alpha \leq 2)$ if the conditions given in (1.4) and (1.5) are fulfilled: $f \in \Sigma$

$$
\begin{equation*}
\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \in p(\mathbb{D}),(z \in \mathbb{D}) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1-w}{1+w}-1-\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right] \in q(\mathbb{D}),(w \in \mathbb{D}) \tag{1.7}
\end{equation*}
$$

where the g is given in (1.3).

Remark

If we let

$$
\begin{equation*}
p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad \text { and } \quad q(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1, z \in \mathbb{D}) \tag{1.8}
\end{equation*}
$$

in the class $\mathcal{C}_{\Sigma}^{p, q}(\alpha)$ then we have $\sum_{C_{\beta}(\alpha)}$.
The aim of this paper is to estimate the initial coefficients for the bi-concave functions in \mathbb{D}.

2. Initial Coefficient Boundary for $\left|a_{2}\right|$ and $\left|a_{3}\right|$

The estimation of initial coefficient for bi-concave functions class $\mathcal{C}_{\Sigma}^{p, q}(\alpha)$ are presented in this section.
Theorem 2.1. If the function $f(z)$ given by (1.1) is in $\mathcal{C}_{\Sigma}^{p, q}(\alpha)$ then
$\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{(\alpha+1)^{2}}{4}+\frac{\left(\alpha^{2}-1\right)}{8}\left[\left|p^{\prime}(0)\right|+\left|q^{\prime}(0)\right|\right]+\frac{(\alpha-1)^{2}}{32}\left[\left|p^{\prime 2}+\right| q^{\prime 2}\right]}\right.$

$$
\begin{equation*}
\left.; \sqrt{\frac{(\alpha+1)}{2}+\frac{(\alpha-1)}{16}\left[\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right]}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|a_{3}\right| \leq \min \left\{\frac{(\alpha+1)}{2}+\frac{(\alpha-1)}{24}\left[2\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right]\right. \\
& \left.; \frac{(\alpha+1)^{2}}{4}+\frac{(\alpha-1)}{48}\left[\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right]+\frac{1}{8}\left(\alpha^{2}-1\right)\left[\left|p^{\prime}(0)\right|+\left|q^{\prime}(0)\right|\right]+\frac{1}{32}(\alpha-1)^{2}\left[\left|p^{\prime 2}+\right| q^{\prime 2}\right]\right\} . \tag{2.2}
\end{align*}
$$

Proof. Firstly, we can write the argument inequalities in their equivalent forms as follows:

$$
\begin{equation*}
\frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1+z}{1-z}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]=p(z) \quad(z \in \mathbb{D}) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1-w}{1+w}-1-\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right]=q(w) \quad(w \in \mathbb{D}) \tag{2.4}
\end{equation*}
$$

In addition to, the $p(z)$ and $q(w)$ can be expended to Taylor-Maclaurin series as given below respectively

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots
$$

and

$$
q(w)=1+q_{1} w+q_{2} w^{2}+\ldots
$$

Now upon equating the coefficients of $\frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1+z}{1-z}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]$ with those of $p(z)$ and the coefficients of $\frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1-w}{1+w}-1-\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right]$ with those of $q(w)$. We can write $p(z)$ and $q(w)$ as follows.

$$
\begin{equation*}
p(z)=\frac{2}{(\alpha-1)}\left[\frac{(\alpha+1)}{2} \frac{1+z}{1-z}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=\frac{2}{(\alpha-1)}\left[\frac{(\alpha+1)}{2} \frac{1-w}{1+w}-1-\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right]=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots \tag{2.6}
\end{equation*}
$$

Since

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{2 a_{2} z+6 a_{3} z^{2}+12 a_{4} z^{3}+\ldots}{1+2 a_{2} z+3 a_{3} z^{2}+4 a_{4} z^{3}+\ldots}=2 a_{2} z+\left(6 a_{3}-4 a_{2}^{2}\right) z^{2}+\ldots
$$

and

$$
\frac{1+z}{1-z}=1+2 \sum_{n=1}^{\infty} z^{n}=1+2 z+2 z^{2}+2 z^{3}+\ldots
$$

we obtain that

$$
\begin{aligned}
& \frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1+z}{1-z}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \\
& =\frac{2}{(\alpha-1)}\left[\frac{(\alpha+1)}{2}-1+(\alpha+1) z+(\alpha+1) z^{2}+\ldots-2 a_{2} z-\left(6 a_{3}-4 a_{2}^{2}\right) z^{2}+\ldots\right] \\
& =\frac{2}{(\alpha-1)}\left[\frac{(\alpha-1)}{2}+\left((\alpha+1)-2 a_{2}\right) z+\left((\alpha+1)-\left(6 a_{3}-4 a_{2}^{2}\right)\right) z^{2}+\ldots\right] \\
& =1+\frac{2\left[(\alpha+1)-2 a_{2}\right]}{(\alpha-1)} z+\frac{2\left[(\alpha+1)-6 a_{3}+4 a_{2}^{2}\right]}{(\alpha-1)} z^{2}+\ldots
\end{aligned}
$$

Then

$$
\begin{align*}
p_{1} & =\frac{2\left[(\alpha+1)-2 a_{2}\right]}{(\alpha-1)} \tag{2.7}\\
p_{2} & =\frac{2\left[(\alpha+1)-6 a_{3}+4 a_{2}^{2}\right]}{(\alpha-1)} \tag{2.8}
\end{align*}
$$

From (1.3) and (2.4)

$$
\begin{aligned}
\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)} & =\frac{-2 a_{2} w+6\left(2 a_{2}^{2}-a_{3}\right) w^{2}-12\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{3}+\ldots}{1-2 a_{2} w+3\left(2 a_{2}^{2}-a_{3}\right) w^{2}-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{3}+\ldots} \\
& =-2 a_{2} w+\left(8 a_{2}^{2}-6 a_{3}\right) w^{2} \cdots
\end{aligned}
$$

Then from $q(w)$ given by (2.6), we have

$$
\begin{aligned}
& \frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1-w}{1+w}-1-\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right] \\
& =\frac{2}{(\alpha-1)}\left[\frac{(\alpha+1)}{2}-(\alpha+1) w+(\alpha+1) w^{2}-\ldots-1+2 a_{2} w-\left(8 a_{2}^{2}-6 a_{3}\right) w^{2}+\ldots\right] \\
& =1-\frac{2\left[(\alpha+1)-2 a_{2}\right]}{(\alpha-1)} w+\frac{2\left[(\alpha+1)-8 a_{2}^{2}+6 a_{3}\right]}{(\alpha-1)} w^{2}+\ldots
\end{aligned}
$$

So we can obtain q_{1} and q_{2} as follows

$$
\begin{align*}
q_{1} & =-\frac{2\left[(\alpha+1)-2 a_{2}\right]}{(\alpha-1)} \tag{2.9}\\
q_{2} & =\frac{2\left[(\alpha+1)-8 a_{2}^{2}+6 a_{3}\right]}{(\alpha-1)} \tag{2.10}
\end{align*}
$$

From (2.7) and (2.9) we obtain

$$
\begin{gather*}
p_{1}=-q_{1} \tag{2.11}\\
a_{2}^{2}=\frac{(\alpha+1)^{2}}{4}-\frac{\left(\alpha^{2}-1\right)}{8}\left[p_{1}-q_{1}\right]+\frac{(\alpha-1)^{2}}{32}\left[p_{1}^{2}+q_{1}^{2}\right] \tag{2.12}
\end{gather*}
$$

Also, from (2.8) and (2.10) we obtain that

$$
\begin{equation*}
a_{2}^{2}=\frac{(1-\alpha)}{8}\left[p_{2}+q_{2}\right]+\frac{4(\alpha+1)}{8} \tag{2.13}
\end{equation*}
$$

Therefore, we find from the (2.12) and (2.13)
$\left|a_{2}\right|^{2} \leq \frac{(\alpha+1)^{2}}{4}+\frac{\left(\alpha^{2}-1\right)}{8}\left[\left|p^{\prime}(0)\right|+\left|q^{\prime}(0)\right|\right]+\frac{(\alpha-1)^{2}}{32}\left[\left|p^{\prime 2}+\right| q^{\prime 2}\right]$
and
$\left|a_{2}\right|^{2} \leq \frac{(\alpha+1)}{2}+\frac{(\alpha-1)}{16}\left[\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right]$.
So we have the coefficient of $\left|a_{2}\right|$ as maintained in (2.1).
Now, to obtain the bound on the coefficient $\left|a_{3}\right|$ we use (2.8) and (2.10). So we obtain

$$
(\alpha-1)\left(p_{2}-q_{2}\right)=24 a_{2}^{2}-24 a_{3}
$$

From (2.13) we find

$$
\begin{align*}
24 a_{3} & =-(\alpha-1)\left(p_{2}-q_{2}\right)+24\left(\frac{(\alpha+1)}{2}+\frac{(1-\alpha)}{8}\left(p_{2}+q_{2}\right)\right) \\
& \Rightarrow a_{3}=\frac{(\alpha+1)}{2}-\frac{(\alpha-1)}{12}\left[2 p_{2}+q_{2}\right] \tag{2.14}
\end{align*}
$$

We thus find that
$\left|a_{3}\right| \leq \frac{\alpha+1}{2}+\frac{(\alpha-1)}{24}\left(2\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right)$.
Also from (2.12) we obtain

$$
\begin{align*}
& 24 a_{3}=-(\alpha-1)\left(p_{2}-q_{2}\right)+24\left[\frac{(\alpha+1)^{2}}{4}-\frac{\left(\alpha^{2}-1\right)}{8}\left(p_{1}-q_{1}\right)+\frac{(\alpha-1)^{2}}{32}\left(p_{1}^{2}+q_{1}^{2}\right)\right] \\
& \Rightarrow a_{3}=\frac{(\alpha+1)^{2}}{4}-\frac{(\alpha-1)}{24}\left(p_{2}-q_{2}\right)-\frac{1}{8}\left(\alpha^{2}-1\right)\left(p_{1}-q_{1}\right)+\frac{1}{32}(\alpha-1)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.15}
\end{align*}
$$

We thus find that

$$
\left|a_{3}\right| \leq \frac{(\alpha+1)^{2}}{4}+\frac{(\alpha-1)}{48}\left(\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right)+\frac{1}{8}\left(\alpha^{2}-1\right)\left(\left|p^{\prime}(0)\right|+\left|q^{\prime}(0)\right|\right)+\frac{1}{32}(\alpha-1)^{2}\left(\left|p^{\prime 2}+\right| q^{\prime 2}\right)
$$

So, The the proof of Theorem 2.1 is completed.

3. Conclusion

If p and q are chosen in Theorem 2.1 as follows, the following corollary can easily be obtained.

$$
p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad \text { and } \quad q(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1, z \in \mathbb{D})
$$

Corollary 3.1. Let $f(z)$, in the expansion (1.1) be in the bi-concave function class $\sum_{C_{\beta}(\alpha)},(0 \leq \beta<1,1<\alpha \leq 2)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{(\alpha+1)}{2}+\frac{(\alpha-1)}{2}(1-\beta)}
$$

and

$$
\left|a_{3}\right| \leq \frac{(\alpha+1)}{2}+\frac{(\alpha-1)}{2}(1-\beta)
$$

References

[1] Altınkaya, Ş. and Yalçın, S., General Properties of Multivalent Concave Functions Involving Linear Operator of Carlson-Shaffer Type, Comptes rendus de l'Academie bulgare des Sciences, $69 \mathbf{1 2}(2016)$, 1533-1540.
[2] Avkhadiev, F. G., Pommerenke, C. and Wirths, K.-J., Sharp inequalities for the coefficient of concave schlicht functions, Comment. Math. Helv. 81(2006), 801-807.
[3] Avkhadiev F. G. and Wirths, K.-J., Concave schlicht functions with bounded opening angle at infinity, Lobachevskii J. Math. 17(2005), 3-10.
[4] Bayram, H. and Altınkaya, Ş., General Properties of Concave Functions Defined by the Generalized Srivastava-Attiya Operator, Journal of Computational Analysis and Applications, 23 3(2017), 408-416.
[5] Bulut, S., Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43(2013), no. 2, 59-65.
[6] Brannan, D. A. and Taha, T. S., On some classes of bi-univalent functions , Studia Univ. Babes-Bolyai Math. 2(1986), no. 31, 70-77.
[7] Cruz, L. and Pommerenke, C., On concave univalent functions, Complex Var. Elliptic Equ. 52(2007), 153-159.
[8] Duren, P. L., Univalent functions, In. Grundlehren der Mathematischen Wissenschaften, vol. 259, New York: Springer1983.
[9] Frasin, B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24(2011), 1569-1573.
[10] Lewin, M., On a coefficient problem for be univalent functions , Proc Amer Math. Soc, 18(1967), 63-68.
[11] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(2010), 1188-1192.
[12] Xu, Q.-H., Xiao, H.-G. and Srivastava, H. M., A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 23(2012), no. 218, 11461-11465.
[13] Xu, Q.-H., Gui, Y.-C. and Srivastava, H. M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(2012), 990-994.

Current address: F. Müge SAKAR Batman University Faculty of Management and Economics Department of Business Administration 72060 Batman TURKEY

E-mail address: mugesakar@hotmail.com
ORCID Address: http://orcid.org/0000-0002-3884-3957
Current address: H. Özlem GÜNEY Dicle University Faculty of Science Department of Mathematics 21280 Diyarbakır TURKEY

E-mail address: ozlemg@dicle.edu.tr
ORCID Address: http://orcid.org/0000-0002-3010-7795

