
EKOIST Journal of Econometrics and Statistics
EKOIST 2023, 39 : 26–36

DOI: 10.26650/ekoist.2023.39.1221032

RESEARCH ARTICLE

Asset Allocation with Combined Models Based on Game-Theory Approach
and Markov Chain Models

Salih Çam1

1(PhD.), Cukurova University, Department of Econometrics, Adana, Turkiye

ABSTRACT
The measurement of expected returns has a major impact on portfolio performance. While there are several methods used
for estimating expected returns in existing studies, the mean-variance model most commonly used in portfolio theory utilizes
the method of expected returns calculated from historical data. However, the problem with estimating expected returns is that
estimating parameters based on historical data, such as the arithmetic mean, may not reflect the distributional characteristics of the
return series and may not be an appropriate statistic for the population parameters. Therefore, using robust statistics or combined
portfolio models can lead to better portfolios that minimize estimation error while maximizing expected returns. In this paper, we
use game theory and Markov chain models to estimate expected asset returns and compare portfolios constructed based on these
methods. The analysis results show that the portfolio constructed based on game theory yielded higher returns than the target
index and mean-variance model, while the model based on Markov chains yielded portfolios with the lowest portfolio risk. In all
out-of-sample investment periods, the game theory based portfolio produced better returns than the portfolios estimated in the
study, except for the period from January 2022 to December 2022.
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Introduction

Asset allocation poses one of the greatest problems for investors in the process of constructing a portfolio. The investor who
aims to reduce investment risk through diversification is interested in how many stocks should be included in a portfolio. Modern
portfolio theory answers this question and aims to maximize the investor’s expected return at a given level of risk. Markowitz’s
mean-variance model clearly articulates the relationship between risk and return. The model is built within a strong logical
framework, taking into account the variance-covariance matrix between assets. Despite its advantages, the assumptions about
return series have led to some criticisms of the model, the most important of which is the assumption of normality and the concern
that the estimation of asset returns should be free from bias. However, return series are generally not normally distributed and have
a fat-tailed distribution (Eugene Fama, 1965). Therefore, the use of the arithmetic mean in the case of non-normally distributed
returns may lead to biased and incorrect results (Ibragimov, 2005). Under the normality assumption, the classical mean estimator is
linear, unbiased, and the best (BLUE) estimator. If this assumption is not met, an estimator that better reflects the characteristics of
the distribution should be used to create an efficient portfolio. Therefore, researchers have used a number of estimation methods to
better predict the future. Using robust statistics for fat-tailed distributions can lead to the construction of more efficient portfolios.
To avoid the estimation biases, Welsch and Zhou (2007) estimated asset returns using a weighted average for "fat-tailed" returns,
giving more weight to observations around the mean and less weight to observations near the tail. DeMiguel and Nogales (2009)
used robust M and R estimators to remove bias in the estimators. In addition, Hubert, Debruyne and Rousseeuw (2018), Reyna et
al. (2005), Yang, Couillet, and McKay (2015) attempted to create portfolios that are superior to the mean-variance model using
robust statistics with different properties. In addition to the statistics mentioned above, there are two other downside risk measures
or robust risk measures widely used in financial studies: VaR (Value at Risk) and CVaR (Conditional Value at Risk). VaR and
CVaR have been used to create efficient portfolios and eliminate the undesirable effect of biased estimators.
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It is widely accepted that a portfolio contains two different risks: systematic and unsystematic. The unsystematic risk can be
eliminated by diversification. However, estimated returns have a major impact on portfolios and diversification. An incorrect
estimate of returns may lead to an undiversified asset allocation. In this study, we search for a combined portfolio construction
process to avoid or minimize estimation errors. We utilized the Markov chain model, which estimates stock returns based on
transition probabilities of the system, and game theory to obtain a more accurate estimate of the returns used as parameters for
portfolio construction while creating the portfolios. As with the Markov chain model, the game theory approach estimates returns
based on probabilities. In game theory, probabilities are assigned using linear programming. In estimating the expected returns of
the game theory and Markov chain models, the system was divided into three strategies according to the BIST30 returns: negative
returns, neutral or zero returns, and positive returns. It was hoped that computing the weighted average of asset returns as a
parameter estimator would yield more efficient portfolios than Markowitz’s mean-variance model. Since they use the probabilities
obtained for the three given states of the BIST 30 index, the parameters estimated by the combined method correspond to a robust
statistical estimate. Thus, it does not require the assumption of normality.

Literature Reviews

The calculation of return has a crucial impact on portfolio risk. Unsystematic risk in a portfolio can be eliminated through
diversification (Evans and Archer, 1968; Malkiel, 2002; Lhabitant, 2017; Koumou, 2020). However, return series are often not
normally distributed and some stocks have infinite variance (Fama, 1965). Thus, although it is possible to reduce portfolio risk
to some extent through diversification, it may be necessary to use other methods to eliminate such a risk. Diversification means
benefiting from the appreciation of other assets while some assets lose value. However, the direction and strength of relationships
among assets play an important role in gaining benefit from diversification (Campbell et al., 2001). In addition to the direction
of the relationship, the measurement of asset returns also has a significant impact on the diversification of the models. The fact
that returns are usually not normally distributed has led researchers to search for other solutions. Fabozzi et al. (2007) have shown
that returns with a fat-tailed distribution significantly affect portfolio performance. It was concluded that other moments besides
mean and variance are needed in portfolio optimization. Granito and Walsh (1978), Arditti and Levy (1977), Jobst and Zenios
(2001), Chen and Zhou (2018), Gong et al. (2021) have used high moments in portfolio theory in different ways to avoid bias in
the estimation of parameters included in the classical mean and variance model. These studies show that portfolios constructed
with high moments may produce superior results when compared with the mean-variance model.

In the classical mean-variance model, the expected returns and risks are calculated based on past returns. However, the
distributional properties of the return series have the effect of producing unbiased statistics of the parameters used in the model.
Although the mean-variance model does not clearly express this, the model assumes that asset return series are normally distributed
and will be normally distributed in the future. If the normality assumption is not satisfied, the calculated expected returns lose their
reliability (Mandelbrot 1997; Bhansali, 2008; Sheikh and Qiao, 2009; Esch, 2010; Stoyanov et al., 2011; Eom, 2020). At this point,
portfolio models that incorporate risk or uncertainty, as opposed to classical optimization, are necessary for asset allocation. Since
the Markov chain model uses transition probabilities, it is one of the most important models used in financial studies (McQueen
and Thorley, 1991; Özdemir and Demireli, 2014; Yenisu, 2020; Çam, 2021).

Besides the Markov chain model, many methods such as game theory are used to obtain unbiased estimators. Game theory is
a method used in many fields from economics to international relations, from tourism to energy studies, and it provides superior
results (Song and Zhang, 2013; Zhu-Gang, Wen-Jia, and Can, 2014; Tran and Thompson, 2015; Ruan et al., 2018; Norouzi, Fani,
and Talebi, 2022). In the game theory, a well-defined payoff matrix can be used to determine which strategy should play with which
probability. Since the probabilities of a game reflect the state of the system and the distributional properties, it can be applied to
complex problems such as financial markets. To this end, many important studies have been conducted using game theory (Farias
et al., 2006; Ding, 2006; Ferreira et al., 2009; Carfì and Musolino, 2012; Carfì, and Musolino, 2013; Tüfekçi and Avşarlıgil, 2016;
Yavuz and Eren, 2016; Essid et al., 2018; Ibrahim et al., 2020; Evangelista, Saporito and Thamsten, 2022).

Method

In this paper, we combined three approaches to create more efficient portfolios: Game theory, Markov chains, and Markowitz’s
mean-variance model. Game theory and Markov chains are widely used models for many optimization problems. Here we compared
the portfolios that combine game theory with the mean-variance model and the portfolio that combines the Markov chain model
with the mean-variance model.
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Game Theory

Game theory is a simple tool for choosing the most efficient strategy against nature or other players, taking into account all their
strategies. It is based on a payoff matrix that represents the outcome (reward) of players’ choices in a game. A payoff matrix can
be organized with two players: A row player with m strategies and a column player with n strategies.

Table 1. The Payoff Matrix of a Game Theory with Two Players

Game theory is a simple tool for choosing the most efficient strategy against nature or other 

players, taking into account all their strategies.  It is based on a payoff matrix that represents 

the outcome (reward) of players' choices in a game. A payoff matrix can be organized with two 

players: A row player with m strategies and a column player with n strategies.  

Table 1: The Payoff Matrix of a Game Theory with Two Players 

Row Player's Strategy 
Column Player's Strategy 

Column 1 Column 2 ⋯ Column n 

Row 1 𝑎ଵଵ 𝑎ଵଶ ⋯ 𝑎ଵ௡ 

Row 2 𝑎ଶଵ 𝑎ଶଶ ⋯ 𝑎ଶ௡ 

          ⋮ ⋮ ⋮  ⋮ 

Row 𝑚 𝑎௠ଵ 𝑎௠ଶ ⋯ 𝑎௠௡ 

  

In the table, each row represents the strategy of the row player, while each column defines the 

strategy of the column player, and 𝑎௜௝ is the reward of the game if the row player chooses the 

i-th strategy and the column player chooses the j-th strategy. Linear programming is used to 

determine the game value and probability of each player's strategy. The expected return on 

assets can be determined using the probabilities resulting from linear programming. The basic 

linear programming formulation of the game can be stated as follows:   

𝑍௠௔௫ = 𝑣 

𝑣 ≤ 𝑎ଵଵ𝑥ଵ + 𝑎ଶଵ𝑥ଶ + ⋯ + 𝑎௠ଵ𝑥௠ (Column 1 constraint) 

𝑣 ≤ 𝑎ଵଶ𝑥ଵ + 𝑎ଶଶ𝑥ଶ + ⋯ + 𝑎௠ଶ𝑥௠ (Column 2 constraint) 

⋮ 

𝑣 ≤ 𝑎ଵ௡𝑥ଵ + 𝑎ଶ௡𝑥ଶ + ⋯ + 𝑎௠௡𝑥௠ (Column n constraint) 

𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥௠ = 1 

𝑥௜ ≥ 0       (𝑖 = 1,2, … , 𝑚);     𝑣 urs 

The formulation shown above represents the maximum reward for a row player. But the 

mathematical formulation of a game theory can be organized for a column player:   

 

 

 

𝑍௠௜௡ = 𝑤 

In the table, each row represents the strategy of the row player, while each column defines the strategy of the column player, and
𝑎𝑖 𝑗 is the reward of the game if the row player chooses the i-th strategy and the column player chooses the j-th strategy. Linear
programming is used to determine the game value and probability of each player’s strategy. The expected return on assets can be
determined using the probabilities resulting from linear programming. The basic linear programming formulation of the game can
be stated as follows:

𝑍𝑚𝑎𝑥 = 𝑣

𝑣 ≤ 𝑎11𝑥1 + 𝑎21𝑥2 + · · · + 𝑎𝑚1𝑥𝑚 (Column 1 constraint)
𝑣 ≤ 𝑎12𝑥1 + 𝑎22𝑥2 + · · · + 𝑎𝑚2𝑥𝑚 (Column 2 constraint)

...

𝑣 ≤ 𝑎1𝑛𝑥1 + 𝑎2𝑛𝑥2 + · · · + 𝑎𝑚𝑛𝑥𝑚 (Column n constraint)
𝑥1 + 𝑥2 + · · · + 𝑥𝑚 = 1

𝑥𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑚); 𝑣 𝑢𝑟𝑠

The formulation shown above represents the maximum reward for a row player. But the mathematical formulation of a game
theory can be organized for a column player:

𝑍𝑚𝑖𝑛 = 𝑤

𝑤 ≥ 𝑎11𝑦1 + 𝑎12𝑦2 + · · · + 𝑎1𝑛𝑦𝑛 (Row 1 constraint)
𝑤 ≥ 𝑎21𝑦1 + 𝑎22𝑦2 + · · · + 𝑎2𝑛𝑦𝑛 (Row 2 constraint)

...

𝑤 ≥ 𝑎𝑚1𝑦1 + 𝑎𝑚2𝑦2 + · · · + 𝑎𝑚𝑛𝑦𝑛 (Row m constraint)
𝑦1 + 𝑦2 + · · · + 𝑦𝑛 = 1

𝑦 𝑗 ≥ 0( 𝑗 = 1, 2, . . . , 𝑛);𝑤 𝑢𝑟𝑠

each player’s mathematical formulation is a dual formulation of the other and the game value (solution value) would be equal
for both. Once the probability of each strategy is calculated, the probabilities obtained from the linear programming solution can
be used to determine the assets’ expected returns based on game theory (Winston, 2004).
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Markov Chains Model

Markov chains express that a process observed for the current period depends on the state of one previous period (regime) and
is independent of past states. In mathematical terms, let a process with N states be observed at time points T=0,1,2,3,...,t, and let
𝑋1, 𝑋1, . . . , 𝑋𝑡 be the observed values for each time point. In this case:

𝑃(𝑋𝑡 |𝑋𝑡−1, 𝑋𝑡−2, . . . , 𝑋0) = 𝑃(𝑋𝑡 |𝑋𝑡−1)

The above mathematical formulation defines Markovian processes. Let S𝑡 be a randomly distributed variable that takes integer
values and suppose the current value of S𝑡 depends only on period t-1. Now:

𝑃{𝑠𝑡 = 𝑗/𝑠𝑡−1 = 𝑖, 𝑠𝑡−2 = 𝑘, . . . ..} = 𝑃𝑠𝑡 = 𝑗/𝑠𝑡−1 = 𝑖 = 𝑃𝑖 𝑗

where s𝑡=j is the realization of the system in period t, P𝑖 𝑗 is the transition probability from state i to state j (Hamilton,1994).
Such a process is defined as an N-state Markov process with probability matrix {P𝑖 𝑗}𝑖, 𝑗=1,2,3,. . . ,𝑁 . The sum of the probabilities
for the transition from state i to all other states is 1 and is represented as follows:

𝑝𝑖1 + 𝑝𝑖2 + . . . . . . + 𝑝𝑖𝑁 = 1

A Markov chain model is said to be stationary (ergodic) if we assume that one eigenvalue of the P matrix is equal to one (unity)
and the other eigenvalues lie within the unit circle. The ergodic probabilities for the Markov chain are represented as a 𝜋 vector of
size (Nx1).

𝑃.𝜋 = 𝜋

The solution of this equation will provide the ergodic probabilities of the system. Since the sum of the elements of the eigenvalue
vector 𝜋 is equal to 1, the vector 𝜋 is normalized. Consequently, the ergodic probabilities represent the probabilities that the
system would be in which regime in the long run, and the expected return of each asset from ergodic probabilities would yield the
Markovian returns of the assets.

Mean-Variance Model

The mean-variance model proposed by Markowitz (1952) is one of the most widely used models for determining efficient
portfolios. The model takes into account both the expected return and the risk of a portfolio and tries to minimize the risk when
maximizing the expected return. A model for portfolio optimization with general constraints is presented as follows:

𝑍𝑚𝑎𝑥 = 𝜇′𝑤 − 𝜆.𝑤ı ∑𝑤

𝐴𝑤 ≤ 𝑏

𝑙 ≤ 𝑤 ≤ 𝑢

where μ is the coefficient vector of the objective function, w is the weight vector, A is the coefficients matrix of constraints, b
is the vector of right-hand side coefficients,

∑
is the variance-covariance matrix, is the risk aversion constant, and l and u are the

lower and upper bound of the weights, respectively.

Analysis and Results

We used the daily closing price of 29 stocks traded on BIST30 between January 02, 2015, and December 30, 2021. A stock was
excluded in the analysis due to the lack of data and the aim was to create optimal portfolios from the remaining stocks. We grouped
stock returns according to the three conditions of the BIST30 series: negative index returns, zero index returns, and positive index
returns. When grouping daily returns, the returns that were close to but not equal to zero were accepted as neither positive nor
negative. Since returns are rarely equal to zero, returns that were close to zero were treated as neutral returns or, in other words,
zero returns. In the next step, the expected returns were calculated based on game theory and the Markov chain model using the
following formula:
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𝐸 (𝑟𝑖) = 𝑃(𝑅𝑚 ≤ 0).𝐸 (𝑟𝑖 |𝑅𝑚 ≤ 0) + (𝑅𝑚 = 0).𝐸 (𝑟𝑖 |𝑅𝑚 = 0) + (𝑅𝑚 ≥ 0).𝐸 (𝑟𝑖 |𝑅𝑚 ≥ 0)𝑜𝑟𝐸 (𝑟𝑖)
= Σ3

𝑡=1𝑃(𝑅𝑚 |𝑆𝑡 ).𝐸 (𝑟𝑖 |𝑅𝑚 = 𝑆𝑡 )
(1)

Here, E(r𝑖 ) is the expected return of the i-th stock. P(R𝑚 |S𝑡 ) is the conditional probability of the market return based on three
scenarios: negative returns, neutral or zero returns, and positive returns. S𝑡 represents the scenarios of the system in and can take
three values: S𝑡=1 in which R𝑚 ≤ 0, S𝑡=2 in which R𝑚=0, and S𝑡=3 in which R𝑚 ≥ 0. The conditional probability of market
returns was obtained from the solution of game theory and the Markov chain model. The game theory model was solved for the
column player or, in other words, for the market. The solution of the game provides the conditional probability of market returns
in the case of negative, zero and positive returns.

Table 2. Descriptive Statistics1

Here, 𝐸(𝑟௜) is the expected return of the i-th stock.  𝑃(𝑅௠|𝑆௧) is the conditional probability of 

the market return based on three scenarios: negative returns, neutral or zero returns, and positive 

returns.  𝑆௧ represents the scenarios of the system in and can take three values: 𝑆௧ = 1 in which 

𝑅௠ ≤ 0,  𝑆௧ = 2 in which 𝑅௠ = 0, and 𝑆௧ = 3 in which 𝑅௠ ≥ 0. The conditional probability 

of market returns was obtained from the solution of game theory and the Markov chain model. 

The game theory model was solved for the column player or, in other words, for the market. 

The solution of the game provides the conditional probability of market returns in the case of 

negative, zero and positive returns.  

Table 2. Descriptive Statistics 

 The whole sample      𝑺𝒕 = 𝟏   

Variable Obs Mean 
Std. 
Dev. Min Max 

Jarque-
Bera1 Obs Mean 

Std. 
Dev. Min Max 

AKBNK 1985 0.077 2.351 -10.000 10.000 686.61*** 65 -0.124 1.189 -4.405 4.502 
AKSA 1985 0.210 2.516 -19.802 9.979 1238.18*** 65 0.451 1.911 -2.948 8.471 
ARCLK 1985 0.122 2.086 -12.468 9.978 818.34*** 65 -0.067 1.358 -3.150 4.581 
BIM 1985 0.111 1.802 -10.000 9.915 954.21*** 65 0.059 1.474 -1.995 7.995 
DOHOL 1985 0.161 2.759 -14.471 19.551 4265.37*** 65 0.346 1.801 -2.473 5.736 
EKGYO 1985 0.084 2.386 -12.615 12.037 999.46*** 65 -0.191 1.492 -4.935 3.723 
EREGL 1985 0.177 2.274 -9.981 9.978 363.57*** 65 0.338 1.845 -3.857 7.112 
FROTO 1985 0.181 2.430 -10.929 10.005 733.74*** 65 0.244 1.823 -3.341 6.861 
GARAN 1985 0.088 2.421 -11.558 10.000 773.93*** 65 -0.043 1.087 -2.795 3.033 
GUBRF 1985 0.228 2.827 -10.326 18.195 1550.79*** 65 0.716 2.578 -2.923 10.703 
ISCTR 1985 0.103 2.361 -13.225 9.991 891.99*** 65 -0.024 1.087 -2.273 3.207 
KCHOL 1985 0.117 2.026 -9.968 9.436 680.32*** 65 -0.134 1.521 -6.805 3.083 
KOZAA 1985 0.231 3.632 -20.000 20.000 2922.90*** 65 0.525 4.404 -10.366 19.101 
KOZAL 1985 0.205 3.155 -19.955 20.000 1863.08*** 65 0.335 3.662 -11.090 13.434 
KRDMD 1985 0.146 2.744 -12.271 11.157 202.61*** 65 0.243 2.041 -3.551 7.258 
PETKM 1985 0.159 2.269 -10.410 17.993 1988.82*** 65 0.042 1.976 -3.422 9.929 
PGSUS 1985 0.165 2.961 -11.294 14.837 458.94*** 65 -0.353 2.577 -9.973 4.433 
SAHOL 1985 0.100 2.031 -9.970 9.972 692.72*** 65 -0.181 1.280 -5.290 2.665 
SASA 1985 0.393 3.355 -16.886 20.000 1753.50*** 65 0.384 3.236 -9.958 15.220 
SISE 1985 0.164 2.177 -10.011 12.095 570.30*** 65 0.231 1.418 -3.394 4.190 
TAHVL 1985 0.125 2.507 -17.387 10.000 714.97*** 65 -0.313 2.058 -6.405 4.090 
TCELL 1985 0.087 2.014 -10.000 9.955 804.78*** 65 0.244 1.143 -3.147 3.306 
THYAO 1985 0.156 2.526 -12.584 9.996 481.02*** 65 -0.092 1.350 -3.611 2.619 
TKFEN 1985 0.136 2.394 -10.000 16.396 454.28*** 65 0.193 2.256 -6.808 6.229 
TOASO 1985 0.161 2.312 -10.000 10.020 404.69*** 65 0.403 1.808 -2.892 7.581 
TTKOM 1985 0.081 2.307 -17.269 9.980 1428.30*** 65 0.163 1.458 -3.178 4.883 
TUPRS 1985 0.151 2.150 -9.990 10.105 778.65*** 65 -0.026 1.761 -2.981 7.039 
VESTL 1985 0.161 3.022 -17.498 20.836 4188.05*** 65 -0.084 2.382 -6.489 5.485 
YKBNK 1985 0.098 2.399 -13.009 11.577 706.62*** 65 -0.152 1.599 -4.035 6.518 

(***) significance at 1%.    

 Table 1 shows the descriptive statistics of the stock returns used in the analysis. The descriptive 

statistics of the whole sample are presented on the left side of the table, while figures on the 

                                                           
1 The null hypothesis of Jarque-Bera test is that “the series is normally distributed.” 

Table 1 shows the descriptive statistics of the stock returns used in the analysis. The descriptive statistics of the whole sample
are presented on the left side of the table, while figures on the right side of the table were calculated for S𝑡=1 where market returns
were negative. In a sense, these figures are the conditional expected values of the stocks and represent the rewards of the row player
in the game when the nature or column player plays his first strategy (negative return).

The rewards of the row player (investor) in the case of the second and third strategy of the column player are summarized in
table 2. The conditional expected returns shown on the left side of the table represent the rewards of the row player when S𝑡=2.
The returns shown on the right side of the table are the rewards of the row player when S𝑡=3. The conditional probability of the
game with respect to the column player’s strategies was obtained by solving the linear programming.

1 The null hypothesis of Jarque-Bera test is that “the series is normally distributed.”
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Table 3. Descriptive Statistics (continued

right side of the table were calculated for 𝑆௧ = 1 where market returns were negative. In a sense, 

these figures are the conditional expected values of the stocks and represent the rewards of the 

row player in the game when the nature or column player plays his first strategy (negative 

return).  

The rewards of the row player (investor) in the case of the second and third strategy of the 

column player are summarized in table 2. The conditional expected returns shown on the left 

side of the table represent the rewards of the row player when 𝑆௧ = 2. The returns shown on 

the right side of the table are the rewards of the row player when 𝑆௧ = 3. The conditional 

probability of the game with respect to the column player’s strategies was obtained by solving 

the linear programming.  

Table 3. Descriptive Statistics (continued) 

𝑺𝒕 = 𝟐         𝑺𝒕 = 𝟑     
Variable Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max 
AKBNK 888 -1.482 1.779 -10.000 4.690 1032 1.432 1.973 -9.962 10.000 
AKSA 888 -0.655 2.605 -19.802 9.979 1032 0.939 2.223 -9.667 9.966 
ARCLK 888 -0.847 1.928 -12.468 7.950 1032 0.968 1.880 -6.638 9.978 
BIM 888 -0.564 1.743 -10.000 7.934 1032 0.695 1.663 -7.466 9.915 
DOHOL 888 -0.774 2.820 -11.750 19.551 1032 0.955 2.494 -14.471 19.213 
EKGYO 888 -1.149 2.113 -12.615 7.761 1032 1.163 2.120 -8.299 12.037 
EREGL 888 -0.974 1.997 -9.981 7.109 1032 1.158 2.050 -4.257 9.978 
FROTO 888 -0.791 2.487 -10.929 10.005 1032 1.013 2.082 -5.174 9.994 
GARAN 888 -1.428 1.892 -11.558 4.394 1032 1.400 2.102 -9.946 10.000 
GUBRF 888 -0.892 2.666 -10.326 18.195 1032 1.160 2.625 -9.994 16.430 
ISCTR 888 -1.361 1.915 -13.225 4.308 1032 1.370 2.012 -10.000 9.991 
KCHOL 888 -1.085 1.726 -9.968 4.163 1032 1.166 1.686 -4.532 9.436 
KOZAA 888 -0.888 3.677 -20.000 19.774 1032 1.175 3.252 -10.390 20.000 
KOZAL 888 -0.749 3.185 -19.955 20.000 1032 1.018 2.854 -12.099 15.470 
KRDMD 888 -1.271 2.433 -12.271 9.735 1032 1.360 2.436 -6.574 11.157 
PETKM 888 -0.877 2.231 -10.410 9.914 1032 1.059 1.911 -7.593 17.993 
PGSUS 888 -1.160 2.720 -11.294 10.000 1032 1.338 2.681 -6.965 14.837 
SAHOL 888 -1.139 1.684 -9.970 4.249 1032 1.184 1.702 -4.336 9.972 
SASA 888 -0.605 3.321 -14.880 19.203 1032 1.251 3.150 -16.886 20.000 
SISE 888 -0.920 2.073 -10.011 12.095 1032 1.092 1.850 -5.597 9.970 
TAHVL 888 -0.844 2.444 -17.387 9.959 1032 0.986 2.264 -7.126 10.000 
TCELL 888 -0.832 1.910 -10.000 9.320 1032 0.868 1.802 -6.677 9.955 
THYAO 888 -1.229 2.246 -12.584 5.790 1032 1.364 2.169 -6.154 9.996 
TKFEN 888 -0.826 2.402 -10.000 16.396 1032 0.960 2.067 -7.592 9.992 
TOASO 888 -0.829 2.240 -10.000 9.347 1032 0.997 2.054 -6.662 10.020 
TTKOM 888 -1.014 2.261 -17.269 9.980 1032 1.019 1.949 -5.583 9.447 
TUPRS 888 -0.792 2.038 -9.990 10.105 1032 0.974 1.919 -5.971 9.979 
VESTL 888 -0.949 2.912 -17.498 16.804 1032 1.131 2.814 -13.889 20.836 
YKBNK 888 -1.403 1.932 -13.009 7.528 1032 1.405 2.014 -9.966 11.577 

The full sample consists of 1985 daily returns. Of these, 65 were neutral or zero, 888 were 

negative, and 1032 were positive. For the full sample, the expected return on all stocks was 

positive, with SASA having the highest expected return at 0.393% and AKBNK having the 

lowest expected return at 0.077%. The standard deviation and range of returns were high 

The full sample consists of 1985 daily returns. Of these, 65 were neutral or zero, 888 were negative, and 1032 were positive.
For the full sample, the expected return on all stocks was positive, with SASA having the highest expected return at 0.393% and
AKBNK having the lowest expected return at 0.077%. The standard deviation and range of returns were high compared to the
subsample statistics. According to the Jarque-Bera normality test, the null hypothesis stating the normality of the series is rejected
at 1% for all stocks. It can be concluded that none of the return series was normally distributed. For S𝑡=1, more than half of the
stocks had positive expected returns. This means that a stock has almost a 50% chance of having a positive expected return when
BIST30 has a neutral or zero return. When BIST30 had no positive or negative return, KOZAA had the highest positive return of
19.101% and KOZAL had the lowest negative return of -11.09% on a trading day. Conditional expected returns can be used to
calculate the payoff matrix of the game theory.

Table 4. Payoff Matrix
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Table 4. Payoff Matrix 

Stocks S୲ = 1 S୲ = 2 S୲ = 3 Stocks S୲ = 1 S୲ = 2 S୲ = 3 

AKBNK -0.124 -1.482 1.432 PETKM 0.042 -0.877 1.059 
AKSA 0.451 -0.655 0.939 PGSUS -0.353 -1.160 1.338 
ARCLK -0.067 -0.847 0.968 SAHOL -0.181 -1.139 1.184 
BIM 0.059 -0.564 0.695 SASA 0.384 -0.605 1.251 
DOHOL 0.346 -0.774 0.955 SISE 0.231 -0.920 1.092 
EKGYO -0.191 -1.149 1.163 TAHVL -0.313 -0.844 0.986 
EREGL 0.338 -0.974 1.158 TCELL 0.244 -0.832 0.868 
FROTO 0.244 -0.791 1.013 THYAO -0.092 -1.229 1.364 
GARAN -0.043 -1.428 1.400 TKFEN 0.193 -0.826 0.960 
GUBRF 0.716 -0.892 1.160 TOASO 0.403 -0.829 0.997 
ISCTR -0.024 -1.361 1.370 TTKOM 0.163 -1.014 1.019 
KCHOL -0.134 -1.085 1.166 TUPRS -0.026 -0.792 0.974 
KOZAA 0.525 -0.888 1.175 VESTL -0.084 -0.949 1.131 
KOZAL 0.335 -0.749 1.018 YKBNK -0.152 -1.403 1.405 
KRDMD 0.243 -1.271 1.360     
 𝑃(S୲ = 1) 𝑃(S୲ = 2) 𝑃(S୲ = 3)  𝑃(S୲ = 1) 𝑃(S୲ = 2) 𝑃(S୲ = 3) 

Table 3 represents the payoff matrix for the game with two players. The row player is an 

investor, and the column player is BIST30. In this game, BIST30, or nature, has three strategies: 

negative, neutral, and positive return, while the investor has 29 different strategies. The goal of 

the game is to maximize the investor's expected return. Fortunately, linear programming can be 

used to calculate the probabilities for each strategy that maximizes the expected value of the 

game. There are two ways of solving the problem: Solving the mathematical formulation for 

the row player or solving the mathematical formulation for the column player. Each formulation 

is a dual of the other and both would yield an equal game value. We solved the game for the 

column player, and the conditional probabilities are given below:  
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Table 3 represents the payoff matrix for the game with two players. The row player is an investor, and the column player is
BIST30. In this game, BIST30, or nature, has three strategies: negative, neutral, and positive return, while the investor has 29
different strategies. The goal of the game is to maximize the investor’s expected return. Fortunately, linear programming can be
used to calculate the probabilities for each strategy that maximizes the expected value of the game. There are two ways of solving
the problem: Solving the mathematical formulation for the row player or solving the mathematical formulation for the column
player. Each formulation is a dual of the other and both would yield an equal game value. We solved the game for the column
player, and the conditional probabilities are given below:

Table 5. The Probabilities of Column player’s strategies
Table 5.  The Probabilities of Column player’s strategies 

 𝑷(𝐒𝐭 = 𝟏) 𝑷(𝐒𝐭 = 𝟐) 𝑷(𝐒𝐭 = 𝟑) 
Probabilities from 

Game Theory 
0.33 0.29 0.38 

Probabilities from 
Markov Chains 

0.46 0.05 0.49 

According to the linear programming solution, the BIST30 or column player would earn 

negative, neutral, and positive returns with probabilities of 33%, 29%, and 38%, respectively. 

Using the probabilities of the column players, we calculated the expected returns of each stock. 

The stationary probabilities of the Markov chain model resulting from the transition matrix 

show that BIST30 had a 46% probability of being in the first strategy, a 5% probability of being 

in the second strategy, and a 49% probability of being in the third strategy. The obtained returns 

can be used to construct efficient portfolios.  

Table 6.   The Expected Returns Obtained from Game Theory and Markov Chains Models 

Stock 
Expected Returns 

from Game Theory 

Expected 
Returns from 

Markov Chains 
Stock 

Expected Returns 
from Game Theory 

Expected 
Returns from 

Markov Chains 

AKBNK 0.010 0.019 PETKM 0.119 4.052 
AKSA 0.267 4.171 PGSUS 0.016 3.862 
ARCLK 0.063 2.661 SAHOL 0.015 4.837 
BIM 0.091 1.623 SASA 0.382 3.680 
DOHOL 0.203 1.478 SISE 0.173 3.242 
EKGYO 0.000 2.998 TAHVL 0.000 3.002 
EREGL 0.210 3.775 TCELL 0.121 2.552 
FROTO 0.190 2.792 THYAO 0.078 3.687 
GARAN 0.040 3.896 TKFEN 0.143 3.886 
GUBRF 0.348 4.866 TOASO 0.217 2.636 
ISCTR 0.056 4.458 TTKOM 0.094 2.985 
KCHOL 0.039 4.940 TUPRS 0.096 2.905 
KOZAA 0.300 3.878 VESTL 0.086 3.029 
KOZAL 0.232 3.275 YKBNK 0.018 4.694 
KRDMD 0.160 4.168    

Table 6 shows the expected returns calculated on the basis of game theory and the Markov 

chains model. In other words, the figures in Table 6 are the weighted average of the individual 

stocks. For example, the expected return of AKSA was calculated as (0.451x0.33)-

(0.655x0.29)+(1.432x0.38). In Markowitz's mean-variance model, the returns were calculated 

as the equally weighted mean of the negative, neutral, and positive returns. Of course, the 

expected returns resulting from the different methods were not identical. Therefore, portfolios 

constructed based on a different measure of expected returns would yield different portfolios 

with different returns and risks. The Markov chain model was another method used in the study 

to determine expected returns. As in game theory, three different strategies were considered to 

According to the linear programming solution, the BIST30 or column player would earn negative, neutral, and positive returns
with probabilities of 33%, 29%, and 38%, respectively. Using the probabilities of the column players, we calculated the expected
returns of each stock. The stationary probabilities of the Markov chain model resulting from the transition matrix show that BIST30
had a 46% probability of being in the first strategy, a 5% probability of being in the second strategy, and a 49% probability of
being in the third strategy. The obtained returns can be used to construct efficient portfolios.

Table 6. The Expected Returns Obtained from Game Theory and Markov Chains Models
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show that BIST30 had a 46% probability of being in the first strategy, a 5% probability of being 

in the second strategy, and a 49% probability of being in the third strategy. The obtained returns 

can be used to construct efficient portfolios.  
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Expected 
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AKBNK 0.010 0.019 PETKM 0.119 4.052 
AKSA 0.267 4.171 PGSUS 0.016 3.862 
ARCLK 0.063 2.661 SAHOL 0.015 4.837 
BIM 0.091 1.623 SASA 0.382 3.680 
DOHOL 0.203 1.478 SISE 0.173 3.242 
EKGYO 0.000 2.998 TAHVL 0.000 3.002 
EREGL 0.210 3.775 TCELL 0.121 2.552 
FROTO 0.190 2.792 THYAO 0.078 3.687 
GARAN 0.040 3.896 TKFEN 0.143 3.886 
GUBRF 0.348 4.866 TOASO 0.217 2.636 
ISCTR 0.056 4.458 TTKOM 0.094 2.985 
KCHOL 0.039 4.940 TUPRS 0.096 2.905 
KOZAA 0.300 3.878 VESTL 0.086 3.029 
KOZAL 0.232 3.275 YKBNK 0.018 4.694 
KRDMD 0.160 4.168    

Table 6 shows the expected returns calculated on the basis of game theory and the Markov 

chains model. In other words, the figures in Table 6 are the weighted average of the individual 

stocks. For example, the expected return of AKSA was calculated as (0.451x0.33)-

(0.655x0.29)+(1.432x0.38). In Markowitz's mean-variance model, the returns were calculated 

as the equally weighted mean of the negative, neutral, and positive returns. Of course, the 

expected returns resulting from the different methods were not identical. Therefore, portfolios 

constructed based on a different measure of expected returns would yield different portfolios 

with different returns and risks. The Markov chain model was another method used in the study 

to determine expected returns. As in game theory, three different strategies were considered to 

Table 6 shows the expected returns calculated on the basis of game theory and the Markov chains model. In other words, the
figures in Table 6 are the weighted average of the individual stocks. For example, the expected return of AKSA was calculated
as (0.451x0.33)-(0.655x0.29)+(1.432x0.38). In Markowitz’s mean-variance model, the returns were calculated as the equally
weighted mean of the negative, neutral, and positive returns. Of course, the expected returns resulting from the different methods
were not identical. Therefore, portfolios constructed based on a different measure of expected returns would yield different
portfolios with different returns and risks. The Markov chain model was another method used in the study to determine expected
returns. As in game theory, three different strategies were considered to estimate the expected returns. Here, we calculated the
stationary probabilities for each strategy. These probabilities were used to calculate the expected returns of the assets that can be
used to build efficient portfolios.

No matter how strong a model may be in theory, in practice it should produce a higher return than index returns and competing
model portfolios. The strength of a model can be measured by the return achieved over a given term. An investor who invests in
a proposed portfolio would want to beat the market at the end of the investment period. Otherwise, the proposed portfolio has
no value in practice. To compare the combined models presented in this paper with the index and the mean-variance model, we
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planned four investment periods. The first period covered the last two months from September 2022 to December 2022, the second
covered January 2022 to the end of the sample period, and the third began in April 2020, the start of the Covid 19 pandemic, and
extended to the end of the sample period. The last investment period extended from January 2015 to the end of the sample period
(December 2022). The rates of increase in the value of the portfolio over an actual investment period are shown in Table 7.

Table 7. Appreciation Rates of Proposed Models

estimate the expected returns. Here, we calculated the stationary probabilities for each strategy. 

These probabilities were used to calculate the expected returns of the assets that can be used to 

build efficient portfolios. 
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Table 7.  Appreciation Rates of Proposed Models 

Investment Period 
Markov 

Chain model 
Game Theory 

Model 
Mean-Variance 

model 
BIST30 
(Index) 

September 2022 to December 2022 42.169% 51.560% 42.730% 46.477% 
January 2022 to December 2022 147.493% 134.869% 134.878% 154.814% 
January 2020 to December 2022 446.120% 616.140% 406.399% 533.916% 
January 2015 to December 2022 920.939% 1472.345% 1339.128% 408.314% 

The figures in Table 7 show that an investment in the Markov chain model in January 2015 

would have gained 920.94% in value at the end of the investment period. During this period, 

BIST30 only gained 408.31% in value. The combined model based on the Markov chain gained 

more than twice as much in value as the index. The increase in value of the portfolio proposed 

with the mean-variance model during this period was 1339.13%, while the investment in a 

portfolio created with the combined model based on the game theory achieved a return of almost 

1500%. The Covid-19 pandemic had a negative impact on financial markets. During the 

pandemic most markets, both emerging and developed, suffered large losses. So, investing a 

portfolio in the financial market was riskier than ever.  

An investment in a portfolio suggested by the mean variance model would yield a gain of 

406.40% at the end of the investment period. From January 2020 to December 2022, the 

BIST30 gained 533.92% in value. Thus, the figures show that the classic mean-variance model 

did not work for exceptional periods such as the Covid-19 pandemic. The combined game 

The figures in Table 7 show that an investment in the Markov chain model in January 2015 would have gained 920.94% in
value at the end of the investment period. During this period, BIST30 only gained 408.31% in value. The combined model based
on the Markov chain gained more than twice as much in value as the index. The increase in value of the portfolio proposed with
the mean-variance model during this period was 1339.13%, while the investment in a portfolio created with the combined model
based on the game theory achieved a return of almost 1500%. The Covid-19 pandemic had a negative impact on financial markets.
During the pandemic most markets, both emerging and developed, suffered large losses. So, investing a portfolio in the financial
market was riskier than ever.

An investment in a portfolio suggested by the mean variance model would yield a gain of 406.40% at the end of the investment
period. From January 2020 to December 2022, the BIST30 gained 533.92% in value. Thus, the figures show that the classic
mean-variance model did not work for exceptional periods such as the Covid-19 pandemic. The combined game theory-based
model delivered a portfolio value gain of 616.14% from January 2020 to December 2022, while the Markov chain model delivered
446.12% over the same period. Among others, the game theory based portfolio beat all proposed portfolios including the target
index. An investment in a portfolio combining mean-variance with the Markov chain model and game theory returned 147.49% and
134.87%, respectively, from the beginning of 2022 to December 2022. Over the same period, the mean-variance model returned
134.88%, while the index gained 154.91%. In all the investment periods, the portfolios based on game theory returned less than
the other portfolios only during this period. If invested as planned over the last two months, a portfolio based on the Markov chain
model and game theory would return 42.17% and 51.56%, respectively. BIST30 returned only 46.48% over the same period.

Figure 1. The Value of Created Portfolios and BIST30

Figure 1 shows the value of a portfolio based on the Markov chains model, game theory, the mean-variance model, and BIST30.
The numbers on the left side of Figure 1 refer to the portfolios created, while the numbers on the right side refer to BIST30.
According to the figure, at the beginning of the sample period, the constructed portfolios had a value of almost 10.00 Turkish liras.
At the end of the period, the game theory portfolio increased to 137.00 Turkish Lira, the Markov chain portfolio increased to 103.37
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Turkish Lira, and the mean-variance portfolio also increased to about 136.00 Turkish Lira. As is well known, the out-of-sample
performance of portfolios is much more important to investors and researchers than the performance of portfolios within a sample
period. Although the total sample period is an indicator of an efficient portfolio, the most important indicator is the out-of-sample
performance. To compare the out-of-sample performance of portfolios in this context, we plotted the short-term line of portfolio
values below.

Figure 2. The Short-run Values of Created Portfolios and BIST30

As in Figure 1, the scale on the left side refers to created portfolios, while the scale on the right side refers to BIST30 in Figure 2.
But here the increase in values in the invested portfolios is more evident. Parallel to the figures in Table 7, Figure 2 shows that the
largest increase is in portfolios created based on game theory. Returns are important, but not the only criterion. The main objective
is to minimize investment risk while maximizing the return on an investment. The portfolio risks of the mean-variance model, the
portfolio based on game theory, and the Markov chain model were 1.91, 1.90, and 1.80, respectively. Thus, we can conclude that
Markov chains construct portfolios with minimum risk but not maximum return.

Conclusion

Modern portfolio theory aims to minimize portfolio risk while maximizing returns, taking into account the relationship between
asset returns via the covariance matrix. However, the estimation of the parameters has a great impact on the created portfolios. In
the existing literature, the analyzes of many studies, including the present work, show that the return series are mostly not normally
distributed and that using the simple arithmetic mean of the assets would lead to biased parameter estimates and inefficient
portfolios. As Markowitz (1991) says, "If we knew which stock gave the highest return, we would maximize our return by investing
only in that stock, with no need for diversification. But none of us know the stock’s distribution function for the investment period.
So, we take some risk in investing and try to spread the risk through diversification." As Markowitz noted, we cannot know
the distribution function of a stock. Using robust statistics that combine estimation methods would provide a robust estimate of
the parameters used in the portfolio model. In this work, we used game theory and the Markov chain model to obtain unbiased
estimators of the parameters and create efficient portfolios that beat the target index.

The results of the analysis suggest that the portfolio constructed on the basis of game theory is superior to the mean variance
model and the model based on Markov chains. Over the long run, the portfolio combining game theory with the portfolio theory
generated a return of almost 1500% in about eight years. With compound interest, this rate corresponds to an average annual
growth of the portfolio of about 40%. Over the same period, the average annual growth of BIST30 was just over 19%, while it
was 38% for the mean-variance model and 31% for the Markov chain model. In the short run, the portfolio which combines game
theory with portfolio theory generated a return of almost 52% over a period of two months. This return represents an average
monthly growth of the portfolio of about 2%. The returns of the other portfolios, including the target index, failed to beat this
rate. BIST30, for example, had an average growth rate of only 1%. Overall, we conclude that the portfolio based on game theory
is superior to the others. The Markov chain-based model is an alternative to the game theory-based portfolio and had the lowest
portfolio risk among the others, including the game theory-based model. Since a combined model can reflect the distribution
characteristics of parameters, an investor or a researcher using a combined model can create more efficient portfolios than the
classical mean-variance model while avoiding investment risks.
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