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Abstract ‘ ‘
.

This research delves into the dynamic landscape of transportation systems, with a specific focus
on the integration of drones and conventional vehicles. The study presents a Mixed Integer
Programming (MIP) model for the Capacitated Multi-Drone Assisted Vehicle Routing Problem
(mDroneCVRP), aiming to minimize the time of the last vehicle's arrival at the warehouse. It is
essential to highlight that the proposed model was effectively solved using the CPLEX algorithm
within the GAMS framework, underscoring the sophistication of the solution approach. The
integration of multiple drones into the routing process proves to be instrumental in significantly
reducing service time, demonstrating the efficacy of synergizing drone and truck operations. As
the number of nodes escalates, emphasizing the necessity for heuristic approaches to address
larger instances, the study provides valuable insights into the judicious use of drones in
synchronized routing operations. Furthermore, the research challenges conventional assumptions
by permitting drones to take off from and land on different vehicles, thereby augmenting
operational capabilities and adeptly tackling contemporary transportation challenges.

Dantzig et al. [1] and identified as an NP-Hard issue, and its subsequent evolution into the Vehicle Routing
Problem (VRP) introduced by Dantzig and Ramser [2], exemplifies the ongoing scientific quest for
optimizing distribution channels for both cost and time efficiency.

The VRP has been a focal point of study across various domains, showcasing adaptations tailored to the
distinct requirements of different systems, influenced by factors such as vehicle types, node configurations,
warehouses, and time constraints. The motivation behind these studies is driven by the commercial and
organizational need to refine distribution networks to minimize costs and meet delivery standards, crucial
for enhancing customer satisfaction and operational success, as seen in both production and marketing

spheres.
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Beyond the commercial domain, distribution systems are garnering attention in fields like humanitarian
logistics, where the efficiency of delivery—marked by timely and material-specific requirements—is
paramount. The scientific literature is rich with vehicle routing studies catering to these areas.

As technology advances, the scope of VRP studies has broadened to include new forms of transportation,
evidenced by the categorization of transport modes into air, land, or water, and further into multimodal and
intermodal transport. Notably, the advent of unmanned aerial vehicles (UAVs or drones) introduces unique
routing challenges and opportunities distinct from classical VRPs, facilitating the integration with other
vehicle types and thus transforming the vehicle routing problem landscape.
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Figure 1. Research methodology steps
3. LITERATURE REVIEW

The research by Murray and Chu [3] integrates drones with vehicles in the Traveling Salesman Problem,
introducing MILP models for the Flying Sidekick TSP (FSTSP) and Parallel Drone Scheduling TSP
(PDSTSP), along with a heuristic algorithm. FSTSP plans routes for both trucks and drones to serve
customers simultaneously, with drones launching from and returning to the truck. PDSTSP allows trucks
and drones to independently serve customers.

Bouman et al. [5] explore all potential truck and drone route combinations, differing from Murray and Chu
[3] by considering rendezvous points as potential departure points, and introduce heuristicgolutions based
on local search and dynamic programming.

Ha et al. [6] focus on cost minimization, proposing local search and grasp heuristi
with 50 and 100 nodes. A subsequent study by Ha et al. [7] introduces a %
heuristic, optimizing drone paths before truck routing, and a “route first-clu

problems
second”

analyses to establish performance benchmarks. Poikonen et al. [9] fugther efining theoretical
limits for expanded scenarios. Ponza [10] applies simulated ann j arking the first use
of meta-heuristics in this field.

Ferrandez et al. [11] experiment to find the optimal cl
the K-means algorithm for efficient delivery point cluste
the approach and solution methods is given in Table 1a and Ta

ssification of the studies according to

The broader scope of vehicle and drone collabofgtion research, as summarized by Otto et al. [4], spans
various applications from disaster respon enh@ncing vehicle coverage and connectivity. The potential
for ships supporting drone operations highli evolving nature of these systems in future logistical
and surveillance tasks.

Otto et al. [4] classify research
emphasizing that their impggta

vehicle ®nd drone operations by their roles within the system,

objective for vehicle
[4]. Operations can be syr¢ gsynchronous, where synchronization depends on various factors
like traffic condjtions and task@iimes (Mathew et al. [12]; Tokekar et al. [13]). The need for coordination

focug’on enhancing service quality through different metrics, including the quantity
and Karakaya [15]), the amount of sensor data collected (Tokekar et al. [13]), and

combined operations according to actual performance servers and synchronizations.

Vehicles assist drones in scenarios where drones play a crucial role, typically in situations where vehicles
do not make deliveries and move slower than drones. Drones are able to cover specific distances over
vehicles, with research varying based on objectives, vehicle-drone interaction patterns, and energy
limitations. Tokekar et al. [13] explored using speed ratios to facilitate drone-vehicle rendezvous, focusing
on transport without delivery. Other studies, like those by Luo et al. [18], Mathew et al. [12], and Garone
et al. [19], consider the possibility of drones recharging on vehicles. Commonly, drones deliver packages
directly to customers, while vehicles serve as mobile bases, extending the drones' operational range
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(Ferrandez et al. [11]; Mathew et al. [12]). Garone et al. [19] addressed optimizing sea rescue missions in
a continuous space, defining drone destinations within vehicle reach. Mathew et al. [12] tackled the
asymmetric Traveling Salesperson Problem (TSP), omitting wait times to minimize delivery costs.
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Vehicles supporting operations of drones Drones supporting operations of vehicles
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.
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Drones and vehicles performing Drones and vehicles as
independent tasks synchronized working units

Figure 2. Combined working patterns of drones and vehicl

In operations with trucks as the main performance driver, drones pport\vehicles for trucks.
Drones can be seen as vehicles supporting mobile warehouse tudies have been
conducted to minimize the cost of the drone tour (Savuran and the maximum number
of customers (Savuran and Karakaya [20]), leaving the carrier w speéd and route. Such studies

the number of drones and optimize service times for
truck support, delivering packages to each customer

@ and Ha et al. [6]. In such settings, the vehicle departs from the
ompletes a round trip. The drone, stationed on the vehicle, delivers

at customer locations and can only depart from and return to the vehicle it
nd Chu [3] observed that synchronization significantly impacts costs due to the

The Vehicle ting Problem (VRP) with drones has been expanded by Wang et al. [8] and Poikonen et
al. [9] to include analyses of cost and efficiency, showing that combined truck and drone delivery can
significantly reduce delivery times when they share a network and move at similar speeds. Poikonen et al.
[9] also explored the maximum efficiency gains under energy constraints and varying distances. Carlsson
and Song [23] and Campbell et al. [22] used a continuous approach to predict delivery costs and times,
assuming customer locations are spread over a plane, with different metrics for vehicle and drone distances.
This approach demonstrated the cost benefits of integrating drones, especially when customer locations are
randomly set. Daknama and Kraus [24] tested various metaheuristics for drone and vehicle delivery,
allowing drones to land on any safely parked vehicle.
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routing

routing

Objective Solution
Author Problem Function Approximation Methodology | Truck Drone Warehouse
minimize total
travel time, -
Haetal. [7] FSTSP maximize the TSP Heuristics 1-Truck 1-Drone 1-Depot
profit
Heterogeneous
Delivery Problem
(HDP), Multiple - R ) )
Mathew et al. [12] Warehouse Total cost TSP Heuristics 1-Truck 1-Droge 1-Depot
Delivery Problem
(MWDP)
TSP, parallel
?g]“”ay andChu | rorsp ppSTSP | Makespan machine Heuristics
scheduling
The optimal
number of
Ferrandez et al. launch locations -
[11] PDSTSP and the optimal TSP Heuristics 1-Depot
total time of
delivery.
Ponza [10] FSTSP Makespan TSP ics ruck -Drone 1-Depot
Bellman-Held-
minimum cost Karp
Bouman et al. [5] TSP-D tour dynamic 1-Tfuck 1-Drone 1-Depot
programmi
algorit
R continuous
Campbell et al. FSTSP Mlnlm_lze approximation 1-Truck d-Drone 1-Depot
[22] operational cost A)
Carlsson and Son minimum tinuous
9| FsTSP - afproximation Heuristics 1-Truck 1-Drone 1-Depot
[23] completiongdime )
Daknama and Vehicle Routing average
Kraus [24] with Drones delivery \Y Heuristics m-Truck | d-Drone 1-Depot
(VRD) jme
a two-echelon GV
and UAV Exact
Luo etal. [18] cooperated routing RPD - 1-Truck 1-Drone 1-Depot
Heuristics
problem (2
RP)
Theorems
. close enough with worst
Poikonen et al. [9] | VRPD routing, VRPD case m-Truck | d-Drone 1-Depot
scenarios
Theorems
Wang et al [8] minimize thg worst case with worst m-Truck | d-Drone 1-Depot
completion time | analysis case
scenarios
minimum cost Eulerian Exact, 1-Truck d-Drone 1-Depot
tour cycle, TSP Heuristics P
K-means
tptal delivery cluste_zrlng, TSP, Heuristics 1-Truck d-Drone 1-Depot
time Nonlinear
programming
Total
Cheng et al. [27] MTDRP-EC Transportation Nonlinear CUTS 0-Truck d-Drone 1-Depot
cost
Ha etal. [6] TSP-D Minimize TSP Exact, 1-Truck | 1-Drone | 1-Depot
operational cost Heuristics
Minimize Constraint
Ham [28] PDSTSP maximum . Exact m-Truck | d-Drone n-Depot
L programming
completion time
Yurek and delivery Exact,
Ozmutlu [29] TSP-D completion time TSP Heuristics 1-Truck | 1-Drone | 1-Depot
Ulmer and SDDPHF (same- maximize the stochastic
Thomas [21] day delivery expected dynamic vehicle Heuristics m-Truck | d-Drone 1-Depot
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problem with number of
heterogeneous customers
fleets)

Table 1b. Classification of Studies of After 2018

Yurek and delivery Exact,
Ozmutlu [29] TSP-D completion time TSP Heuristics | 17Truck | 1-Drone | 1-Depot

Vehicle-Assisted

Multi-UAV . Joint Routing and .
Hu et al. [30] inspection Time wastage Scheduling Heuristics 1-Truck d-Drone 1-Depot

(VAMU)

FSTSP that

implements energy - Exact, R ) R
Jeong etal. [31] consumption and Total time TSP Heuristics 1-Truck 1-Drofe 1-Depot

no fly zone ,
Karak and VRPDERO (en Exact,
Ahdelghany [32] route operations) Makespan VRPD Heuristics m-Truck 1-Depot
Kitjacharoenchai . Exact, R
etal. [33] mTSPD Total time TSP Heuristics m

total time Location, VRP,
Peng etal. [34] FSTSP consumption and Bin Packing 1-Depot
Roberti and
Ruthmair [35] TSP-D Makespan TSP 1-Depot
?;g]ramento etal. VRPD Operational cost | VRPD Drone 1-Depot
Sah [37] DTCO, MDTCO Makespan TSP d-Drone 1-Depot
?;g]ermer etal. mTSPD Makespan TSP d-Drone 1-Depot
?;g]ermer etal. VRPD Makespan VRPD d-Drone 1-Depot
Wang et al. [40] CVRP Makespan SP ng, Branch, | 1-Truck 1-Drone 1-Depot
and price
algorithm

\[/Xi]ng’ Z.and Sheu VRPD Operational cos Exact m-Truck d-Drone 1-Depot
Kitjacharoenchai Exact, R ) )
etal. [42] 2EVRPD Heuristics m-Truck d-Drone 1-Depot
Murray and Raj Exact, R ) )
[43] mFSTSP Heuristics 1-Truck d-Drone 1-Depot
Poikonen and Exact,
Golden [44] Heuristics | + 17uck | d-Drone | 1-Depot

Kitjacharoenchaj

and presented

Sacramento et al.

focusing on
introduced t

Ely. Wi

g and Sheu [41] offered a mixed-integer model addressing complex scenarios
ng trucks, utilizing a branch and price algorithm. Sah [37] provided a comprehensive

ice times and drone collection from non-customer points. Poikonen and Golden [44]
multi-visit drone routing problem (MVDRP), a novel VRP variant.

Tamke and Buscher [46] tackled the VRP with Drones and Drone Speed Selection (VRPD-DSS), proposing
a model that considers speed-dependent energy consumption for cost-saving in rural deliveries. Zhou et al.
[47] focused on the Two-Echelon VRP with Drones (2E-VRP-D), optimizing last-mile deliveries with a
collaborative truck-drone system. Xia et al. [48] proposed the VRP with Load-Dependent Drones
(VRPLD), emphasizing the importance of energy consumption modeling for routing and hub placement.

These studies collectively advance the field of drone-assisted vehicle routing, exploring various models and
heuristics to improve delivery efficiency and cost-effectiveness.
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4. THE MODEL
4.1. Problem Description

While defining the problem, it is necessary to examine the usage areas and purposes of the drone. Today,
many operations can be performed with drones. As seen in Figure 3, these operations are classified
according to drone capabilities. In Figure 3, there are 6 main areas in drone operations. These are area
coverage, search operations, routing for a set of locations, data gathering and recharging in ggvireless sensor
network, allocating communication links and computing power to mobile devices, and opefgtional aspects
of a self-organizing network of drones (Otto et al. [4]).

4
B N > e W
— ¢
\
Area coverage Search operations Routing for a set of locations
T Tl 1 gD amed | [
le— & . R

Data gathering and recharging Allocating communication links and Operational aspects of a self-
in a wireless sensor network computing power to mobile devices organizing network of drones

Figure 3. Classification ofdrone opeMtto etal. [4])

In this study, the VRP is discussed to re
study, apart from the uniform vehicle routing In
operations of drones and other vehjeles as synchroni

egrated distribution of drones with other vehicles. The
assical TSP or VRP, is aimed at planning combined

300

Figure 4. (a) Optimal solutlon of TSP, (b) Optimal TSP Drone solution (Ha et al. [6])

The essence of this analysis is the collaborative utilization of drones with vehicles for transportation, as
discussed by Murray and Chu [3]. The integration alters the problem's dynamics and goals based on the
drones and vehicles' capabilities. Figure 5 compares service times between conventional transportation and
drone-vehicle combinations. It shows that drone-assisted solutions, despite drones' flight time and distance
limitations, are more cost-effective than traditional methods, highlighted by Gantt charts depicting the
operational efficiency gains.
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AV Flight
Range

¥
(¢) Optimized assignment of cus-

tomers to cither a UAV or a tra-
ditional delivery truck.

(b) UAVs deliver to all eligible
customers within the UAV’s flight
range: the delivery truck serves
customers with large parcels or
those outside of flight range.

The traditional
where a delivery
truck visits all customers.

(a)

proach,

ap-

Opticuzes UAV sro

vAv [ I 3 \
Ts o] [ ek set cavies [Fig ()

Depot 9 |

6 | s | \ 1
I

VAV 1 | f [ 1 | 5 | AV visits =l elizible
terers |Fig (L)

Depot 29 | 922 | 257 |

B 1 [ =6 [ 6=7 (=Y [ 2o [xoa]i—vemt]

Depat 9 |

Time

(d) A comparison of delivery schedules for the three systems depicted above

e arMptimized version

Figure 5. Classical method in transportation, the method”§ing a

(Murray and Chu [3])

The technological and physical limitations of dr

Considering the problem of Murray and Chu [34;
warehouse, as given in Figure 6, the comparjson ofgthe drones flown from the truck and the classical method

in terms of total service time due to the fl nd battery life is shown in Figure 7.

[Depor

(a) An optimal truck deliv-
ery sequence, without the
aid of a UAV.

(b) The UAV is launched from a
delivery truck, delivering parcels to
two eligible customers.

[ i=ioe [ e=ios ]

uAv
| D T T ) ST T |
Thuck Depar —+ 3 [ s=0 ] 92 [ 258 = o7 T 76 oot 155 [ 5 Depa

Time

(¢) A comparison of delivery schedules for the two scenarios depicted above.

Figure 6. Transport of drones with trucks and the classical method (Murray and Chu [3])

Meeting points between trucks and drones, beyond flight times and battery life, significantly impact
problem dynamics. As shown in Figure 6, drones rendezvous with the truck at customer service points,

introducing a key variable in problem-solving strategies.
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This study focuses on optimizing the synchronized routes of vehicles and drones. Traditional TSP-DRONE
approaches often use a single drone per vehicle, but as Kitjacharoenchai et al. [33] demonstrate, employing
multiple drones can further reduce service times, as evidenced in Figure 7.

Another assumption revisited is the vehicle's capacity to serve all customers, transforming the problem into
a capacitated vehicle routing problem (CVRP). This study distinguishes itself by considering the capacity
of both vehicles and drones and by not requiring drones to return to the same vehicle from which they
launched, simplifying the complex NP-Hard problem.

The aim is to minimize the return time of the last vehicle to the warehouse by synchronizing the routes of
capacity-equipped trucks and drones, ensuring each customer is served by one vehicle typegThis led to the
development of a mathematical model for the Capacitated Multiple Drone Assisted icle Routing
Problem (mDroneCVRP), addressing these nuanced challenges.

A A S

a) TSP solution b) mTSP solution ) mTSPD solution (I): Drones ‘
refurn to the same truck

—

\
d) mTSPD solution (II): Drones ¢) mTSPD solution (IIT): Drones ) mTSPD solution (IV): Drones
return to the different trucks depart from depot and fly to truck depart and return to depot directly
Figure 7. TSP, multi-TSP, and multi-TS NE feasible solutions are shown (Kitjacharoenchai et al.

4.2. Assumptions

2. Drones can take off/0%
and battery life.
3. The meeting

5. Dro vehicles other than the one from which they take off.
e can take off and land at a time, within the limit of the number of take-offs and

7. The al e drone will take to the customer is included in the total capacity of the truck.
8. While th can only visit one customer per flight, the truck can visit multiple customers.

10. The drone's battery is replaced without charging, and the replacement time is added to the flight start
time and the truck landing time.

11. Drones are flying at a constant speed and the fluid density of air and gravity is assumed to be constant.
12. Speed coefficients are used between trucks and drones. The distance between the nodes is calculated as
the Euclidean distance. Drones have always been assumed to be faster than trucks.

Considering these situations, a mathematical programming model of the problem is created as a mixed
integer programming model.
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4.3. Mathematical Model

In this section, considering the assumptions described above the proposed mathematical programming
model is explained. Models in Murray and Chu [3], Kitjacharoenchai et al. [33], and Schermer et al. [38],
[39], are used as base models for this study.

The index sets and parameters are given in Appendix A. In total, ¢ customers are belonging to set C
(customer cluster). In addition, there is one warehouse node in the network. The storage point is defined as
0 for the output. It is also defined as c+1 as the return node. The set of all nodes in the road network is
defined as N and there are a total of c+2 node elements. Output and input nodes are defined as separate
sets, respectively, as No, and N+. TR and DR sets are defined for vehicles and drones, respectively. Since
drones can only make a flight in three sequential points, a set of triple S has been created by the flight limits.

Decision Variables

ijv

|1, if vehicle v goes from node i to node j
0, otherwise
1, if drone d takes off over vehicle v at node i

FTD;,, =4 and lands on customer node j
0, otherwise
1, if drone d takes off from customer node j
ATD,,, =4 and lands on vehicle v at customer node k
0, otherwise

1, if node i precedes node j in the route of
PT;, =4 Vehiclev
0, otherwise
1, if node i precedes node j in the
PD,, =y droned
0, otherwise

TT;, = Arrival time of vehicle v to
TD, = Aurival time of
UT,, = The sequence

1, if drone d is trasported from node i to node j
=< by vehiclev
0, otherwise

R

ijvd

1, if drone d depart from node i and land on
SDy; =4 customer node j
0, otherwise
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Objective function:
Minimize CT

Constraints:

CT o 2 'I'I'jV
CT, >TD,
DY X+ 2 D sD, =1
veTR ieN, deDRieN,
i#]
22 X+ 2 D SA =1
veTRieN, deDR keN,
k+#j

z Xi,c+l,v < 1
ieNg
D> Xop <1
jeN,
Z Xiy= Z X e
ieNg keN,
ZYijd: Z Yk
ieNg keN,
Z SDye= Z SAjg
ieNg keN,
DY <1
jeN,
PRAATES!
ieNg
SDljd + Z levd :Yljd

veTR
SAj,|:+l‘d + Z Rj,c+1,vd :Yj,c+l‘d

veTR
SDijd + SAjd + Z Rijvd :Yi'
veTR

D SA <D Dy + D7
ieC keC veTR keN,
i#] jzk jzk
D> 'SD; <8
keC heC
j=k h#j

J#k #

> X +SDyy <FTD, +1
heN,
h=i,h#=j

D> Xy tSAyg SATD, +1

heN,
hak,h

VjeN,,veTR
VjeN,,deDR

VjeC
VjeC

vveTR

YV e

VjeN,,deDR

VjeC,d e DR

VjeC,d e DR
VieC,je{C: j=i}d cDR
VjeC,d eDR

VjeC,d eDR

VjeC,veTR,d € DR

VjeC,veTR,d € DR
VieN,,je{C: j=i},veTR,d DR

VieC,d e DR
vk €eC,d e DR
VieC,je{C: j=i},veTR,d e DR

VieCke{C:k= j}veTR,d eDR

(1)

()
3)

(4)
©)
(6)
()
(8)
©)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

(18)

(19)
(20)

(21)
(22)
(23)

(24)
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Z FTDuvd— Z Xhlv

jeC heNg

J# h=#i

> FTD,,, < SDy,
veTR

zATDjkaS z thv
jeC heNg

j=k h=k

> ATD,, < SA

veTR

z z FTDIde - Z z ATDkad + SA] c+1,d

veTR ieC VeTRieC
i=] #1]
z Riva + z ATDy = Z Ria + z FTD
ieN, heC keN, keC
i#] h#j k#j k#j
TD, =TT, ~M(1- > FTD, )
jeC

J#i

TD, <TT, +M(1-> FTD,,)
j<C
J#l

TD, 2TT, ~M(1- > ATD,,,)
B

TD <TT, +M(1-> ATD,,)
B

TDy =TT, -M(1-> Ry)
jeC
J#

TDy <TT, +M(1-> Ry)

jeC
=i

c+1,d 2 TTc+lv -M (1_ z Rj,c+1,vd )
jeC

TDc+1 d = TTC+1 v (1_ Z Rj,c+1,vd )

jeC

D

TT,, >TT,, +tTim,, +s, Z Z A )+s,( Z FTD,,)
I¢IkE,IC¢h
-M (1_ xhkv)
TT,, < M(Z Xii)
heNg
TT,, =TT, joa) 5L ( Z Z FTD,)]
deDR leC
Ik

r ~M(1-SA;,)

TDy —(TDy,

—dTim,,) <M (2-SD,,

+ 3 > > ATD, S +&

d’eDR veDR heC
d'=d h=k

dTim,,SD, +dTim,,SA,, <s, +€,

- SAjkd )+ Z Z Z FTD,qS.

VieC,veTR,d € DR

VieC,je{C: j=i},d eDR

vk eC,veTR,d € DR

VieCke{C:k=j},deDR

VjeC,d e DR

VjeC,veTR,d € DR

VieC,veTR,

Wk €C, R,
N, veTR,d DR

VieN,veTR,d eDR

Vv eTR,d e DR

Vv eTR,d e DR
VheN, ke{N, :k=h},veTR
VkeN,,veTR

VkeC,veTR

VieN,, je{C": j#i},deDR
VjeC'ke{N, :k=j},deDR
VjeN,,veTR

VieNg, je{C:j=i},
ke{N, :<i, j,k>eS},d eDR

Vie{N,
keN,,deDR

i =k} jefC: j =k}

(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)

(42)
(43)
(44)

(45)

(46)
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> > FTD,,, <dronCap,

}:iiCdEDR VieC,veTR 47
%d;R ATD,, <dronCap, R )
i

ZN %d j XM% d;R d,FTD,,,) < capT, - (@)
i;;) d,SD,, <capD, R 50)
i

UTiV—UTjV+1£(C+2)(1— Xijv) VieC,je{N, ] (51)
UT, -UT, >1-(c+2)(PT,,) VieC jefN.:j (52)
UT, -UT;, <-1+(c+2)(1-PT,,) VieC,je{N, ] (53)
PT;,+PT;, =1 VieC,je{N 4 (54)
UD, ~UD, +1<(c+2)(1-Y,,) (55)
UD, -UD,, 21—(C+2)(PDijd) (56)
UD, -UD;, <-1+(c+2)(1-PDy,) (57)
PD,,+PD;; =1 (58)
PTy=1 (59)
PTcv=1 (60)
PD, =1 , (61)
PD;¢.14=1 VieN,deDR (62)
1<UT, £(c+2) VieN,veTR (63)
1<UD, <(c+2) VieN,d eDR (64)
X, €{0.5 VieN, je{N,:jzi},veTR (65)

Y, {01 VieN, je{N,:j=i},d DR (66)

SDy, €{0. 3 V VieN,, je{C:j=i},deDR (67)
SA, €{0.5 VjeCke{N, :k# j},deDR (68)
Ry €{0.3} VieN,,je{N,:j=i},veTR,deDR (69)
FTD,, €{0.3} v VieC,je{C: j=i},veTR,d e DR (70)

VjeC,ke{C:k= j},veTR,d e DR (71)

VieN,je{N:j=i}veTR (72)
VieN,je{N: j=i}d DR (73)
VieN,veTR (74)
VjeN,d e DR (75)

Equation (1) is the objective function that minimizes the service time in the system. Constraint sets 2 and
3 find the arrival time of the last vehicle to the warehouse. Constraint sets 4 and 5 allow each customer
node to be serviced once by truck or drone. Constraint sets 6 and 7 ensure that each truck enters and exits
the warehouse at most once, respectively. Constraint set 8 allows each truck to exit the customer node it
entered. Constraint set 9 provides entry and exit for each drone from the customer node on its route.
Constraint set 10 also provides entry and exit for each drone from the customer node it serves. Constraint
sets 11 and 12 ensure that each drone has a maximum of 1 input and output for each node, respectively (see
Figure 8). In Figure 8, while drones are in any node, they cannot land (A) or take off (B) from any other
node.
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Constraint sets 13 and 14 allow each drone to enter and exit the warehouse by flight or on a truck,
respectively (see Figure 9). Constraint set 15 is the motion balance constraint of the drone's customer nodes
(see Figure 8).

The constraint set shows the movements of the drone at the customer node. These movements should be
arriving at the customer by flight or truck or leaving the customer by flight. Constraint sets 16, 17, 18, and
19 show what the previous and next movements of the drone should be according to the movement of the
customer node. When arrivals are by flight or truck, it ensures that exits from the customer node are by
flight or truck. Likewise, if there is a departure from the customer node, they guarantee that the arrival to
that customer is by flight or by truck. Constraint set 20 enables to add the relevant customey to the route of
the truck and the drone, in case of carrying out the transport operation of the drone on thé tRyck. The same
constraint group guarantees that if there are customers who are not on the route of t drone, they
1 truck at
it cannot

fly. Constraint set 23 activates the decision variable FTD; which shows whi which truck,
and where the drone takes off for a flight when it takes off from a truc stomer. Comstraint set 24

activates the decision variable ATDjoq , which shows from whichusto hich tRuck, and where the

FTD

drone lands when it lands on a truck of any customer. Consigint s 5,2 nd 28 set ™ and

ATDjq variables are zero if the truck or drone is not in tﬁat nod

D) x x L)
A o \‘
o -
) B)

Figure 8. A) The drone different points at the same time. B) The drone cannot land at

different points at the same time

{—/,!

Figure 9. lllustration by decision variables of movements of drone between warehouse and customers or
only customers
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@) B)

Figure 10. Movements of the drone after servicing a customer: A) land on any truck at another customer,
B) return to the warehouse

In constraint set 29, if a drone takes off from any truck to serve a customer, it is ggsured tgat after that
customer it either lands on another customer's truck or returns to the warehouse (se
blocked by these constraints set can be seen in Figure 11.

(A) (B)

Figure 11. A) The drone cannot go to of another customer by flying from the customer it
serves. B) Once the drone is flying for e customer, it cannot take off from another customer

Constraint set 30 guarantees a f another qustomer node or transport by the same truck from the truck
where a drone is transported or lan ta cﬁmer node (see Figure 12).

\’?!‘9 % RS

(&) (B)

Figure 127 @W1f the drone lands on a truck, it cannot make the next flight over another truck. B) If the
drone has landed on a truck, it cannot take off from another customer

Constraint sets 31-36 synchronize the arrival time of the drone with the arrival time of the trucks. Constraint
sets 37 and 38 synchronize their time with trucks when the drones are transported to the warehouse by
trucks. Constraint sets 39 and 40 calculate the departure and operation times of the trucks and the arrival
time at the nodes, and if the truck does not go to the node, the arrival time is reset. In Constraint set 41, the
exit time of the truck from the warehouse is calculated. Constraint sets 42, 43, and 44 calculate the arrival
times of the drones to the nodes and the entry-exit times to the warehouse, and if the drone does not go to
the node, the arrival time is reset. Constraint sets 45 and 46 ensure that the drones do not exceed the flight
limit. Constraint sets 47 and 48 limit the operation of landing and take-off for trucks. Constraint sets 49
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also limits the amount of transport of trucks. Constraint set 50 ensures that drones do not exceed load
capacity. Constraint sets 51, 52, and 53 are sub-tour elimination constraints for trucks. Constraint set 54
establishes the priority relationship between each other for the nodes that each truck visits. Constraint sets
55, 56, and 57 are sub-tour elimination constraints for drones. Constraint set 58 establishes the priority
relationship between each other for node visited by each drone. Constraint sets 59-64 provide the lower and
upper limits of the priority relationship values for trucks and drones from warehouse to nodes, from nodes
to warehouses, and the order values of nodes. Constraint sets 65-75 determine the type and sign of decision
variables.

4.4. Conversion of the Proposed Mathematical Model to the Models that mDroneCVRP is Based on

By changing some parameters in the proposed mathematical model, it can be converted tO\the models in

a traveling salesman problem. Likewise, if the drone capacities are taken as ze,
it turns into a multi-traveling salesman problem. If one drone and one truc
taken in the proposed mathematical model, the model turns into the i jng salesman
problem in Murray and Chu [3]. If more than one truck with unlimite, i d more than one drone
is used and it must be for the drones to land on the truck on which e only flying, the proposed
mathematical model turns into a multiple traveling salesman pr

Changed Parameters Converted Problem
Proposed Truck Drone Truck_ Drone_ Constraint Problem | Author
Model capacity | Capafity
VRPmMD 1-Truck 1-Drone | nolimit | O TSP
VRPmMD m-Truck | 1-Drone | nolimit 0 | mTSP
VRPmMD m-Truck | 1-Drone | limite CVRP
L FSTSP, Murray and Chu
VRPmMD 1-Truck 1-Drone IJmlted PDSTSP | [3]
. - he drone can land on and Kitjacharoenchai
VRPmMD m-Truck | d-Dron limit | no Jimit take off from the same truck. mTSPD etal. [33]

5. EXPERIMENTAL
5.1. Data and Parameter

Diversification

the network is designed as a 2-dimensional space, with a warehouse and ¢ customers
ithin a 60x60 unit area. This setup is varied across five different scenarios by altering

scenario generates datasets with four varying customer counts, exploring different logistical challenges.
For instance, in the first scenario (Figure 13), customers are positioned within drone reach from the
warehouse, whereas in the second scenario (Figure 14), the warehouse is placed too far for direct drone
access to customers. Other scenarios (Figures 15 and 16) further diversify the test conditions to analyze
drone and truck dynamics under various operational circumstances. Speed ratios are established, with
drones consistently faster than trucks, and Euclidean distances calculate drone travel between points. Truck
distances are adjusted by these speed coefficients to reflect their relative slowness.

Wy =V

ruck — "drone

Three different velocity coefficients are used. If truck speed is Vink and drone speed is Varore ,
is defined as the relationship between them. The values of a are taken as 1.5, 2, and 3, respectively.
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In Scenario 1 (Figure 13), customer nodes are created where drones can go from the warehouse and it is
observed whether the drone can exit the warehouse without a truck. Scenario 1 is called as General Network
Structure in terms of observed movements to validate the model.

In Scenario 2 (Figure 14), the challenge stems from all customer nodes being positioned too far from the
warehouse for direct drone access, differing from Scenario 1's closer proximity. The focus here is on
whether drones can depart the warehouse alongside trucks and if they can launch from trucks near
customers after the initial departure. This setup, named the Far Dense Network Structure, tests the model's
handling of drone movements in densely located points beyond their direct flight range from the warehouse.

Scenario 3 (Figure 15) mirrors Scenario 2's constraint of nodes being out of direct dro
warehouse. It differentiates by testing drone efficiency as certain customer points are

placement of distant points.

In Scenario 4 (Figure 16), the nodes remain out of direct drone range fro
distances than those in the previous scenarios. Customers are group

even greater
s, Significantly spaced

Observations on drones' ability to serve clustered customers i
Cluster Network Structure, focusing on logistical strategies f

Scenario 1 network structure & Scenario 2 network structure
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Figure 13. Sce 1 nethcture Figure 14. Scenario 2 network structure

Scenay i ) exténds the distances observed in Scenario 2, focusing on the impact of speed

di er of trucks on logistical outcomes. Here, customers are arranged symmetrically
aroun esting whether drones can launch from and land on vehicles situated on the opposite
side of thejlinitialtake-off point. This setup, due to its emphasis on symmetrical distribution and strategic

movement tion, is termed the Symmetric Far Network Structure.

For the test scenarios, both vehicles and drones are assigned a capacity of 1000 units, effectively treating it
as unlimited relative to the demand in these scenarios. Each vehicle is capable of supporting operations for
up to 4 drones simultaneously, allowing for concurrent flight and landing activities. The maximum flight
duration for drones is set at 20 units. The test data vary by including 9, 8, 7, and 6 customers, along with a
single warehouse, resulting in a total of 360 unique data sets. These datasets are meticulously detailed in
Table 3, indicating the variety and specifics of the data (e.g., the number of scenarios and the corresponding
customer counts) to provide a comprehensive overview for analysis.

Table 3. Summary of data sets
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. Drone
Customer | Depo | Truck Drone FI_|gr_1t Velocity/Truc Scenario Total number of
Number t Number | Number Limit . data set
k Velocity
4(6,7, 8, 1 2(1and | 3(1,2and 1(20 3(1.5,2,and 5(1,2,3,4, 4X1x2x3x1x3x5=3
and 9) 2) 4) units) 3) and 5) 60

Scenario 3 network structure
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Figure 17. Scenario 5 network structure
5.3. Numerical Result

The model was solved using CPLEX on a 16 GB RAM computer through GAMS. Figure 18 shows a
scenario with 6 customers, 2 trucks, and 2 drones, where drones efficiently switch between trucks to serve
customers, illustrating the model's operational dynamics. Figure 19, from scenario 1 with 9 customers,
highlights drones' flexibility, showing they can independently serve customers or be transported by trucks,
showcasing strategic deployment options.

Table 5 presents the objective function values and solution times for scenario 1's test data, revealing an
increase in solution times with the number of nodes, sometimes surpassing the 8000-second limit due to
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the NP-Hard nature of the problem. Conversely, the objective function value decreases with the addition of
drones in scenarios with the same number of nodes, indicating that employing multiple resources enhances
efficiency.

T E— § m—
e W T W I \
Figure 18. Solution of the model with test data with 6 customers, 2 tr nd
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while bein orted. However, in scenarios with 2 trucks and 9 or 8 customers, adding more drones
didn't improvf”the objective function value within the time limit, indicating a challenge in finding optimal
solutions quickly.

Figure 22 reveals that in Scenario 3's network structure, with a speed coefficient of 2, increasing the number
of drones has a negligible effect with 1 truck and only slightly impacts outcomes with 2 trucks. This minimal
influence is attributed to limited truck routing options and the restricted reachability of customers by drones,
reflecting the network’s configuration. Similar observations apply to Scenario 4 solutions in Figure 23,
where the network and limited customer accessibility similarly constrain drone effectiveness.

Figure 24 compares scenario data to highlight the impact of using 2 trucks and increasing the number of
drones within the same dataset. The deployment of 2 trucks proves significantly more effective in this



Hasan KAVLAK, Selcuk Kursat ISLEYEN, Bilal TOKLU/ GU J Sci, 37(3): x-x(2024)

network structure, particularly for scenario 5, where customer nodes are symmetrically distributed across
two regions. However, in the scenario with 9 customers and 2 trucks, adding more drones does not improve
the objective function value, as the model fails to find a solution within the allocated time limit. This
underscores the complexity of balancing resources in drone-assisted delivery systems, especially in
symmetrically structured networks.

Completion time according to number of drone

Completion time according to number of drone
= with 2 truck in scenario 1

with 1 truck in scenario 1

Corplition time Accdrting ta number of diorie Completion time according to number of drone

with 1 truck in scenario 2

Figure 20. Comparison of objective
function values of problems with 1 truck
and 2 trucks in scenario 1 dataset
according to the number of drones

with 2 truck in scenario 2

Completion time according to number of drone Completion time according to number of drone
with 1 truck in scenario 3 with 1 truck in scenario 4
Completion time according to number of drone Completion time according to number of drone
with 2 truck in scenario 3 with 2 truck in scenario 4

Figure 23. Comparison of objective
function values of problems with 1 truck.
and 2 trucks in scenario 4 dataset
according to the number of drones

Completion time according to number of drone
with 1 truck in scenario 5

Completion time according to number of drone
with 2 truck in scenario 5

éh‘bby

Figure 24. Comparison of objective function values of problems with 1 truck and 2 trucks in scenario 5
dataset according to the number of drones
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6. THE PROPOSED ALGORITHM
6.1. Greedy Algorithm

The greedy algorithm for an initial solution to minimize the longest vehicle time in a vehicle routing
problem with multiple trucks and drones follows these steps:
1. ldentify Sorties: Determine three-point sorties within drone flight limits from the distance matrix,
defining potential customer service points for drones.
2. Initialize Vehicles: Assign all vehicles to start from the depot with an initial arrival time of zero.
3. Calculate Travel Times: Use the distance matrix to calculate and average truck travel times for
each destination, then sort these averages in descending order.
4. Assign Drone Sorties: Assign the first suitable sortie from the sorted list to a drong§and calculate
its route end arrival time. If no sortie is suitable, proceed to Step 14 for warefg@use exy{s or Step 11
for non-warehouse points.
5. Update Sets: Refresh the list of destinations and drone sorties accordi
6. Assign All Drones: Repeat Step 4 for each drone, then move to Ste
7 :
8

ute.

10. Repeat for Trucks: Continue routing trucks as in Step
11. Match Drones to Trucks: Update drone routes and tj

13. Return to Warehouse: Send all vehicles
accordingly.

14. Reassign Drones: For drones without sorgies, assign th he route starting at a truck point with
the highest average truck time, updati e arrival time at the route's end.

This algorithm systematically assigns so
to ensure efficient coverage of all customer

0 drignes and routes to trucks, updating times and positions
d synchronization between vehicle types.

The notations of the parameters
below. Most of the notations aré t

d variables used ¥ the problem solving of the algorithm are defined
me as thdse used in the mathematical model.

Notation:
Parameters

Set@hkcustomer, C ={1,...,c}

C
N, \‘Wﬁodes to which vehicles can be departed, N, ={0,1,...,.c}

P

y\\ Y % of nodes to which vehicles can arrive, N, ={1,...c+1}

p Node set ordered according to average of travel truck times of each node ,
N § _— Zh:tTimhi Zh:tTimhj Zh:‘[Timhk
o = bk, C+2 z c+2 -z c+2
Np 4 Set of nodes to which drones can flight, Ny ={1,...,.c+1}
N, Set of nodes to which vehicles can serve, N; ={1,...,c+1}
TR Highway vehicle groups, TR ={1,...,v,...,VN}
DR Set of drones, DR ={1,...,d,...,.DN}

Time to go from node i to node j by highway vehicle v
ieN,, jefN, :j=i}veTR

Flight time of drone d from node i to |,

1eN,, je{N, : j#i},deDR

tTim,

dTim,
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Set of sorties which include three nodes of drone flight <i,j,k>,
S ieNy, je{C: j=ikke{N, k=i k= j,dTim, +dTim, <e }

€ Maximum flight limit of drone d at once, d € DR

Decision variables

{1, if drone d rendezvous with truck v at node i
vd

0, otherwise

_ |1, if vehicle v goes from node i to j dlgiimiine
10, otherwise

3 {1, if drone d take off from node i to node j for serving then landing on node k
)0, otherwise

TT, = Arrival time of vehicle v to node i

TD, = Arrival time of drone d to node i

BNJ = Current node of drone d

BN = Current node of vehicle v

RY = Route of drone d

R’ = Route of vehicle v

C,..x = Maximum arrival time of vehicles at

Objective Function

Cmax = I;Il%??('{-l--l-c-wz,v’TD<:+2,d}

veTR

machlged and destinations are assumed as jobs assigned to that machines. The Longest
ime (PPT) rule, which reduces the maximum completion time in identical parallel machine
scheduling ms, formed the basis for this algorithm. The drones are assigned to points according to
the average tréick times of the points, starting from the largest. The assignment method saves time by finding
where the drones can go through the points with a large average time value for the truck and benefit from
the speed of the drone. Therefore, trucks are assigned to nodes whose average time value is small. When
assigning trucks, the machine in the LPT rule is started with the minimum machine time, that is, the vehicle
time. While assigning trucks, the shortest tour time is aimed for each truck by using the nearest neighbor
algorithm used in the traveling salesman problem solutions.

6.1. Solving Sample Problem

The application of the greedy algorithm on a sample problem is explained below. The 1st scenario, which
is also used in the mathematical model solutions proposed as sample problem data, is used as a data set
with 1 warehouse and 9 customers. The time matrix for the truck and the average truck times of the nodes
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are given in Table 4. The time relationship between the truck and the drone is formed as by taking the
velocity coefficient o = 2. The number of trucks is 2, and the number of drones is 3. The drone flight limit
is taken as e = 20.

Table 4. 1 Warehouse with 9 customers Scenario 1 (General Network Structure) truck transportation
times between nodes and average truck times of nodes

To
Warehouse 2 a: 4. 5 6. 74 8. 0 10. Warehouse
Customer | Customer | Customer | Customer | Customer | Customer | Customer | Customer | Customer

From 1 2 3 4 s 6 7 8 9 10 11
Warehouse | 1 0 24 10 20 18 18 16 18 30 10 0
1. Customer | 2 24 0 16 22 32 42 40 40 40 30 24
2. Customer | 3 10 16 0 12 18 26 26 28 36 20 10
4. Customer | 4 20 22 12 0 14 28 32 38 50 32 20
5. Customer | 5 18 32 8 14 0 16 22 32 48 28 18
6. Customer | 6 18 42 26 28 16 0 10 22 42 22 18
7. Customer | 7 16 40 26 32 22 10 0 12 32 14 16
8. Customer | 8 18 40 28 38 32 22 12 0 20 8 18
9. Customer | 9 30 40 36 50 48 42 32 20 0 20 30
10. Customer |10 10 30 20 32 28 22 14 8 20 0 10
Warel 11 0 24 10 20 18 18 16 18 30 10 0

Average time [ 13:.75 [[2&00 [ 17.08 22.67 [2092 20.83 [ 18.92

Ford=2;j=4¢€ N, and first'so
Vg2 =1, BN, = 11,
Ny = {5,6,7,8,9,10},

=1, min{tTim, ;,}=tTim,,, = 10 therefore j = 3 is assigned to truck. X;;, = 1, BN, =3,

jeNg

TT,, =TT,, +{Tim,,, =0+10=10 R' ={1,3} C ={6,7,8,9,10}, N, = {6,8,9,10}, N; ={6,7,8,9,10}, <i, ], k

> 43

Forv=2; BN, =1, min{tTim,}=tTim,,,= 10 therefore j = 10 k is assigned to truck. X,,,= 1, BN,
jeNy

=10, Ty, =TT, +tTileo’2 =0+10=10 R;— ={1,10} C = {6,7,8,9}, N, ={6,8,9}, N; ={6,7,8,9}, <i, |,

k>:j#10

Detection of the meeting point of the drone and the truck
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BN, = BN, =3 Therefore A, =1, TD,, =20, TT,, =10 therefore TD,, =TT,, =max{20,10}=20

The drone moving on the truck is not found. The drone that could not exit the warehouse is not found.
Iteration 2:

Ford=1;j=6¢€ N, and first sortie <i,j,k> inlist S <i,j,k> is <3,6,7> this route is assigned to drone.

Y;67:. =1, BNY =7, TD,, =TD,, +dTim,,, +dTim,,, =20+18=38 R” ={1,2,3,6,7} C = {7,8,9}, N, =
{8,9}, N; ={7,8,9},<i,j,k>:i#6,j#6,k#6,j#7

For d = 2; BN = 11 Drone arrived to warehouse thus route is determined for next drone .

For d = 3; A common node is not found for list of Ny, and S <i,j,k>

Nodes are assigned to truck according to current truck time and d
applied).

For v = 2 (it has minimum current time between each other);

C={7,9}, N,={9}, N, ={7,9}, <i,j, k>:/#8

For v =1; BN; =3, min{tTim,; }=tTim,,, = 26 therefore | =uigg,dssigned to truck. X,,,= 1, BN =7,

jeNy

TT,, =TT,, +tTim,,, =20+26=46 R ={1,3,7} {9}, N, ={9}, N, ={9}, <i,j,k>:j#7

Detection of the meeting point of the he truck

BN, = BN, =BN;, = 7 therefore
max{38,20,46} = 46

The drone moving on the t

Iteration 3:

Ford=1; for list of N, and S <i,j,k>

Ford=2; BN, to warehouse thus route is determined for next drone .
For d = not found for list of N, and S <i,j,k>

truck according to current truck time and destination time (SPT rule is

Forv=2; =8, min{tTimy,}=tTimy,, = 20 therefore j = 9 is assigned to truck. X,,,= 1, BN, =9,

jeNy

TT,, =TTy, +1Tim,,, =20+18=38 R; ={1,10,89} C={}, N,={}, N, ={}, <i,j, k>:j#9
Forv=1; N, ={} therefore go to next step.

A node that is a meeting point of drone and truck, is not found. The drone moving on the truck is not found.
The drone that could not exit the warehouse is not found.

Finalization: C = {} therefore all vehicles are returned to warehouse

First trucks are returned.
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For v = 1; BN =7, tTim,,,= 16 therefore j = 11 is assigned to truck. X,,,= 1, BN] = 11,
TT,, =TT, +tTim,,,, =46+ 16 =62 R’ ={1,3,7,11}
Table 5. Comparison of greedy heuristics and proposed model
mDroneCVRP Greedy Heuristics
Drone
Number  Number  Number Flight - Velocity Execution | Make- | Execution | Make-
of of of Limit Scenario / Time span Time span GAP
Customer Truck Drone Truck
Velocity «
6 2 2 1 1 2 15.19
7 2 2 1 1 2 20.28
8 2 2 1 1 2 54.72
9 2 2 1 1 2 167.24 20.00
6 2 2 1 2 2 44,50 17.89
7 2 2 1 2 2 24.21
8 2 2 1 2 2 120.00 20.00
9 2 2 1 2 2 124.00 24.00
6 2 2 1 3 2 76.00 11.76
7 2 2 1 3 2 82.00 17.14
8 2 2 1 3 2 82.00  0.00
9 2 2 1 3 2 . 95,00 53.23
6 2 2 1 4 0.05 216.00 50.00
7 2 2 1 4 2 . 0.08 221.00 47.33
8 2 2 1 4 2 1039. 197.00 0.11 240.00 21.83
9 2 2 1 4 2 2276.12 | 197.00 0.03 197.00  0.00
6 2 2 1 5 2 48.66 230.00 0.06 254.00 10.43
7 2 2 1 2 182.21 | 230.00 0.09 254.00 10.43
8 2 2 1 2 1914.23 | 232.00 0.03 25400 9.48
9 2 2 1 5 8012.66 | 232.00 0.04 25400 9.48
6 2 4 1 1 16.92 32.00 0.11 37.00 15.63
7 2 4 1 2 25.55 32.00 0.06 48.00 50.00
8 2 4 1 1 2 33.00 60.00 0.08 69.00 15.00
9 2 1 2 341.01 48.00 0.09 66.00 37.50
6 2 2 168.30 95.00 0.10 112.00 17.89
7 2 2 2 6927.98 | 95.00 0.12 112.00 17.89
8 2 2 2 8010.62 | 96.00 0.17 118.00 22.92
9 2 2 8043.51 | 100.00 0.25 112.00 12.00
6 2 1 3 2 40.55 68.00 0.02 79.00 16.18
7 2 1 3 2 121.27 70.00 0.03 80.00 14.29
8 2 4 1 3 2 792.81 70.00 0.06 82.00 17.14
2 4 1 3 2 8012.91 | 57.00 0.09 105.00 84.21
N 4 1 4 2 36.86 144.00 0.05 216.00 50.00
7 2 4 1 4 2 303.44 | 150.00 0.09 221.00 47.33
8 2 4 1 4 2 364.60 [ 197.00 0.11 240.00 21.83
9 4 1 4 2 8012.86 | 197.00 0.03 197.00  0.00
6 2 4 1 5 2 71.50 230.00 0.07 25400 10.43
7 2 4 1 5 2 269.30 | 230.00 0.09 25400 10.43
8 2 4 1 5 2 474457 | 230.00 0.04 25400 10.43
9 2 4 1 5 2 8020.45 | 232.00 0.06 25400 9.48
For v = 2; BN, =9, tTim,,,,= 30 therefore j = 11 is assigned to truck. X,,,= 1, BN, = 11,

TT,,, =TT, +tTim,,,, =38+30=68 R; ={1,10,8,9,11}

Ford=1; A, =1therefore TD,, =TT,,, = 62, R” ={1,2,3,6,7,11}
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Ford=2; A,,,= 0 therefore TD,, =20 , Ry ={1,4,11}
Ford=3; A ,=1therefore TD, ,=TT,, =62, R ={1,5,7,11}

If all vehicles are arrived to warehouse; C , =max { TD,;,,TD,,,,TD,,;,TT,,,,TT,;, } = { 62, 20, 62, 62, 68

111
} According to the solution of the greedy algorithm, the highest service end time is found to be 68. The
solution of the algorithm is given in Figure 25. A comparison is made between the heuristics algorithm and
the proposed mathematical model in terms of execution time and makespan of problems (see in Table 5).
Some heuristics solutions are better than mathematical model solutions because of the solution time limit
of the mathematical model.

Figure 25. Solution presentation of the gfeedy algorithm (Scenario 1, 9 customers, 2 trucks, 3 drones,
:2)

ohibitive, espeually for high-capacity vehicles. This study
ith another vehicle, broadening operational capabilities and

capabilities, the assogié
explores the synerglstlc
optimizing efficj
in conjunction

more efficie an relying solely on a single vehicle type, as commonly observed in classical Vehicle
Routing Problem (VRP) and Traveling Salesman Problem (TSP) methods. The application of multiple
vehicles in collaborative routing scenarios significantly outperforms studies employing a single drone and
a single vehicle. Consequently, the study aims to determine routes for capacitated vehicles and drones,
minimizing the maximum arrival time at the warehouse. To address this, a mixed-integer mathematical
model is formulated, termed the Multiple-Drone Assisted Capacitated Vehicle Routing Problem
(mDroneCVRP).

Several assumptions in the mDroneCVRP model differentiate it from other studies. A crucial and distinctive
aspect is the flexibility introduced into rendezvous operations between drones and vehicles, mirroring real-
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world scenarios. This flexibility allows drones to land on vehicles other than the one they took off from,
with specific limits imposed on the number of take-off and landing operations on a given vehicle.

To validate and verify the model, a systematic approach is employed, generating 360 data sets comprising
five scenarios, varying numbers of nodes, and different velocity coefficients between drones and trucks.
These instances are solved within an 8000-second time limit. The solutions demonstrate the efficiency gains
achieved by employing multiple drones, including the drone's ability to land on various trucks, conduct
direct flights from customers to the warehouse, and return independently to the warehouse while servicing
customers. Furthermore, the study explores the transformation of the model into representations found in
other studies, indicating its adaptability to solving diverse problems.

initial solutlons for forthcommg metaheurlstlc algorithms. This algorithm, gro
from scheduling problems, proves effective in producing consistent and qu

the delicate balance between drone load and energy consumption, egglecia i optimizing battery
weight. Future studies should explore these challenges, alongsi ezvous points and
the incorporation of multiple warehouses.

As drones play an increasingly vital role in humanit,
problems to drone and vehicle combined operations si
to reduce costs, this research underscores the paramount im
scenarios, offering valuable insights into optimj#ing time utilization

implications. While many studies aim
ce of time over cost in real-world

N, /\ Sethich vehicles can be departed, N, ={0,1,...,c}
|\’|‘ )‘Set_ oMgdes to which vehicles can arrive, N, ={1,...,c+1}
‘Nole &t ordered according to average of travel truck times of each node , N, =

\ DtTim, D tTimy, > tTim,,

ij,...k}, > >

C-k, c+2 C+2

Np Set of nodes to which drones can fly, Ny ={1,....c+1}
N, Set of nodes to which vehicles can serve, N; ={1,...,c+1}
TR Highway vehicle groups, TR ={1,...,v,...,VN}
DR Set of drones, DR ={1,...,d,...,DN}
tTim,, Time to go from node i to node j by highway vehicle vie N, je{N, : j#i},veTR

Flight time of drone d from node i to |,
1eN,, je{N, : j#i},deDR
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Set of sorties which include three nodes of drone flight <i,j,k>,

S ieN,, je{C:j=itke{N, :k=ik= j,dTim; +dTim, <e}
€ Maximum flight limit of drone d at once, d € DR
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