Bu çalışma, bir makine öğrenimi yaklaşımı kullanarak, operasyonel ve finansal verimlilik ölçütlerinin havacılık sektöründeki hisse senedi fiyatlarını nasıl etkilediğini incelemektedir. SHapley Additive exPlanations (SHAP) ile geliştirilmiş bir CatBoost regresyon modeli, 2015-2023 yılları arasında 65 küresel havacılık şirketinden toplanan veriler kullanılarak geliştirilmiştir. Model, Mevcut Koltuk Kilometre Başına Toplam Gelir (ASM), Yolcu Yük Faktörü, likidite oranları ve borç-varlık oranları dahil olmak üzere çeşitli operasyonel ve finansal göstergelere dayalı olarak hisse senedi fiyatlarını tahmin etmektedir. Bulgular, özellikle ASM başına Toplam Gelir ve Yolcu Yük Faktörü gibi operasyonel verimlilik ölçütlerinin havacılık sektöründeki hisse senedi fiyatlarının tahmininde önemli bir rol oynadığını göstermektedir. Hızlı oran ve borç varlık oranı gibi finansal ölçütler de modele katkıda bulunmakta ancak operasyonel faktörlere kıyasla ikincil bir etkiye sahip görünmektedir. SHAP değerleri, modelin tahminleri hakkında yorumlanabilir bilgiler sağlayarak farklı özelliklerin göreceli öneminin daha iyi anlaşılmasına olanak tanımıştır. Ayrıca çalışmanın bulguları, operasyonel ve finansal metriklerin hisse senedi fiyatlarına yansıdığını göstererek, Etkin Piyasa Hipotezi'nin (EPH) yarı-güçlü formunu desteklemektedir. Bu sonuçlar, finansal sağlık önemini korusa da, daha yüksek operasyonel verimlilik gösteren havacılık şirketlerinin olumlu borsa performansı için daha iyi konumlandırılabileceğini göstermektedir. Bu çalışma, operasyonel ve finansal ölçütleri bir makine öğrenimi çerçevesine entegre ederek havacılık sektöründe hisse senedi fiyat tahmini için kapsamlı ve yorumlanabilir bir model sunarak mevcut literatüre katkıda bulunmaktadır.
Havacılık hisse senedi fiyatları makine öğrenimi SHAP değerleri operasyonel verimlilik CatBoost
Using a machine learning approach, this study examines how operational and financial efficiency metrics influence stock prices in the aviation industry. A CatBoost regression model enhanced with SHapley Additive exPlanations (SHAP) was developed using data from 65 global aviation companies collected between 2015 and 2023. The model predicts stock prices based on various operational and financial indicators, including Total Revenue per Available Seat Mile (ASM), Passenger Load Factor, liquidity ratios, and debt-to-assets ratios. The findings suggest that operational efficiency metrics, particularly Total Revenue per ASM and Passenger Load Factor, play a significant role in predicting stock prices within the aviation sector. Financial metrics, such as the Quick Ratio and Debt-to-Assets Ratio, also contribute to the model but appear to have a secondary influence compared to operational factors. SHAP values provided interpretable insights into the model's predictions, allowing for a better understanding of the relative importance of different features. Furthermore, the study's findings offer support for the semi-strong form of the Efficient Market Hypothesis (EMH), demonstrating that operational and financial metrics are reflected in stock prices. These results indicate that aviation companies demonstrating higher operational efficiency may be better positioned for favorable stock market performance, although financial health remains important. This study contributes to the existing literature by integrating operational and financial metrics into a machine learning framework, offering a comprehensive and interpretable model for stock price prediction in the aviation industry.
Aviation stock prices machine learning SHAP values operational efficiency CatBoost
Birincil Dil | İngilizce |
---|---|
Konular | Finans |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 19 Ocak 2025 |
Yayımlanma Tarihi | 21 Ocak 2025 |
Gönderilme Tarihi | 3 Ekim 2024 |
Kabul Tarihi | 29 Aralık 2024 |
Yayımlandığı Sayı | Yıl 2025 |
Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.