Araştırma Makalesi
BibTex RIS Kaynak Göster

Deep Fuzzy Functions Approach for Time Series Forecasting

Yıl 2025, Cilt: 26 Sayı: 4, 680 - 698
https://doi.org/10.37880/cumuiibf.1749594

Öz

In this study, a novel forecasting method is proposed by integrating classical type-1 fuzzy functions with deep learning models based on Long Short-Term Memory (LSTM) networks, aiming to enhance forecast accuracy and systematically address uncertainty in time series data. In the developed approach, an independent LSTM model is constructed for each fuzzy cluster, and these models are trained using lagged variables derived from the time series. During the forecasting phase, the output of each model is weighted according to the degree of membership of the corresponding observation to its respective cluster, and the final prediction is computed accordingly. In this way, the proposed Deep Fuzzy Forecasting Functions (DBF) approach simultaneously captures both the dynamic temporal patterns of the series and the structural uncertainty among observations. The training process employs the Adam optimization algorithm, and various combinations of hyperparameters—including the number of epochs, the number of hidden units, the number of clusters, and the α-cut threshold—were experimentally tested. The optimal configuration was determined based on empirical performance. The proposed DBF approach was evaluated on time series datasets with distinct characteristics, including financial and meteorological data, and benchmarked against widely used forecasting methods. Experimental results demonstrated that the proposed DBF model achieved the lowest prediction errors in many scenarios and delivered high accuracy, particularly for short- and medium-term forecasts. These findings indicate that the developed approach is flexible, generalizable, and effective as a forecasting tool across various domains.

Proje Numarası

FEN-BAP-A-250221-36

Kaynakça

  • Aktoprak, M. R., & Cagcag Yolcu, O. (2025). A New Approach for Time Series Prediction: Fuzzy Regression Network Functions. International Journal of Advances in Engineering and Pure Sciences, 37(1), 36-52. https://doi.org/10.7240/jeps.1573839
  • Aladag, C. H. (2013). Using multiplicative neuron model to establish fuzzy logic relationships. Expert Systems with Applications, 40(3). https://doi.org/10.1016/j.eswa.2012.05.039
  • Aladag, C. H., Turksen, I. B., Dalar, A. Z., Egrioglu, E., & Yolcu, U. (2014). Application of Type-1 Fuzzy Functions Approach for Time Series Forecasting. TJFS: Turkish Journal of Fuzzy Systems An Official Journal of Turkish Fuzzy Systems Association, 5(1), 1309-1190.
  • Alateeq, M., & Pedrycz, W. (2024). Logic-oriented fuzzy neural networks: A survey. Expert Systems with Applications, 257, 125120. https://doi.org/10.1016/j.eswa.2024.125120
  • AL-Sukeinee, R. J., & Khudeyer, R. S. (2024). Review: Deep Learning and Fuzzy Logic Applications. Engineering and Technology Journal, 09(06). https://doi.org/10.47191/etj/v9i06.09
  • Bas, E., & Egrioglu, E. (2022). A fuzzy regression functions approach based on Gustafson-Kessel clustering algorithm. Information Sciences, 592, 206-214.
  • Bas, E., Egrioglu, E., Aladag, C. H., & Yolcu, U. (2015). Fuzzy-time-series network used to forecast linear and nonlinear time series. Applied Intelligence, 43, 343-355. https://doi.org/10.1007/s10489-015-0647-0
  • Bas, E., Grosan, C., Egrioglu, E., & Yolcu, U. (2018). High order fuzzy time series method based on pi-sigma neural network. Engineering Applications of Artificial Intelligence, 72, 350-356. https://doi.org/10.1016/j.engappai.2018.04.017
  • Baser, F., & Demirhan, H. (2017). A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation. Energy, 123, 229-240. https://doi.org/10.1016/j.energy.2017.02.008
  • Beyhan, S., & Alci, M. (2010). Stable modeling based control methods using a new RBF network. ISA Transactions, 49(4), 510-518. https://doi.org/10.1016/j.isatra.2010.04.005
  • Beyhan, S., & Alci, M. (2011). Extended fuzzy function model with stable learning methods for online system identification. International Journal of Adaptive Control and Signal Processing, 25(2). https://doi.org/10.1002/acs.1214
  • Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & geosciences, 10(2-3), 191-203.
  • Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Içinde Holden-Day series in time series analysis and digital processing (Rev. ed.). Holden-Day. https://books.google.com.tr/books?id=1WVHAAAAMAAJ
  • Cagcag Yolcu, O., & Yolcu, U. (2024). A new ensemble intuitionistic fuzzy-deep forecasting model: Consolidation of the IFRFs-bENR with LSTM. Information Sciences, 679. https://doi.org/10.1016/j.ins.2024.121007
  • Celikyilmaz, A., & Turksen, I. B. (2007). Fuzzy functions with support vector machines. Information Sciences, 177(23), 5163-5177. https://doi.org/10.1016/j.ins.2007.06.022
  • Celikyilmaz, A., & Turksen, I. B. (2008). Enhanced fuzzy system models with improved fuzzy clustering algorithm. IEEE Transactions on Fuzzy Systems, 16(3), 779-794.
  • Celikyilmaz, A., Turksen, I. B., & Kacprzyk, J. (2009). Modeling Uncertainty with Fuzzy Logic: With Recent Theory and Applications. Içinde Studies in Fuzziness and Soft Computing (C. 240). Springer-Verlag Berlin Heidelberg. https://books.google.com.tr/books?id=Xj1vCQAAQBAJ
  • Chakravarty, S., Demirhan, H., & Baser, F. (2020). Fuzzy regression functions with a noise cluster and the impact of outliers on mainstream machine learning methods in the regression setting. Applied Soft Computing, 96, 106535. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106535
  • Chakravarty, S., Demirhan, H., & Baser, F. (2022a). Modified fuzzy regression functions with a noise cluster against outlier contamination. Expert Systems with Applications, 205. https://doi.org/10.1016/j.eswa.2022.117717
  • Chakravarty, S., Demirhan, H., & Baser, F. (2022b). Robust wind speed estimation with modified fuzzy regression functions with a noise cluster. Energy Conversion and Management, 266. https://doi.org/10.1016/j.enconman.2022.115815
  • Chen, S. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81(3), 311-319. https://doi.org/10.1016/0165-0114(95)00220-0
  • Dalar, A. Z. (2023). Ensemble Based Type-1 Fuzzy Functions Approach for Time Series Forecasting. Içinde S. Küçükkolbaşı (Ed.), 2023 Proceedings of International E-Conference on Mathematical and Statistical Sciences: A Selcuk Meeting (ss. 78-78). Selçuk University.
  • Dalar, A. Z., & Egrioglu, E. (2018). Bootstrap Type-1 Fuzzy Functions Approach for Time Series Forecasting. Içinde M. Tez & D. von Rosen (Ed.), Trends and Perspectives in Linear Statistical Inference (ss. 69-87). Springer, Cham. https://doi.org/10.1007/978-3-319-73241-1_5
  • Dalar, A. Z., & Egrioglu, E. (2025). Blending traditional and novel techniques: Hybrid type-1 fuzzy functions for forecasting. Engineering Applications of Artificial Intelligence, 148, 110445. https://doi.org/10.1016/J.ENGAPPAI.2025.110445
  • Demirhan, H., & Baser, F. (2024). Hierarchical fuzzy regression functions for mixed predictors and an application to real estate price prediction. Neural computing & applications (Print), 36, 11545-11561. https://doi.org/10.1007/s00521-024-09673-3
  • Demirkan Piskin, M., & Bas, E. (2022). Forecasting Monthly Housing Sales to Foreigners with Type 1 Fuzzy Regression Functions Approach Based on Ridge Regression. Karadeniz Fen Bilimleri Dergisi, 12(2). https://doi.org/10.31466/kfbd.1074832
  • Ducange, P., Fazzolari, M., & Marcelloni, F. (2020). An overview of recent distributed algorithms for learning fuzzy models in Big Data classification. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00298-6
  • Egrioglu, E., Aladag, C. H., Yolcu, U., & Bas, E. (2014). A new adaptive network based fuzzy inference system for time series forecasting. Aloy Journal of Soft Computing and Applications, 2(1), 25-32.
  • Egrioglu, E., & Bas, E. (2023). Robust intuitionistic fuzzy regression functions approaches. Information Sciences, 638. https://doi.org/10.1016/j.ins.2023.118992
  • Egrioglu, E., Fildes, R., & Bas, E. (2022). Recurrent fuzzy time series functions approaches for forecasting. Granular Computing, 7(1). https://doi.org/10.1007/s41066-021-00257-3
  • Egrioglu, E., Yolcu, U., & Bas, E. (2019). Intuitionistic high-order fuzzy time series forecasting method based on pi-sigma artificial neural networks trained by artificial bee colony. Granular Computing, 4(4). https://doi.org/10.1007/s41066-018-00143-5
  • Fernández, A., Carmona, C. J., del Jesus, M. J., & Herrera, F. (2016). A View on Fuzzy Systems for Big Data: Progress and Opportunities. International Journal of Computational Intelligence Systems, 9. https://doi.org/10.1080/18756891.2016.1180820
  • Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2023). A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 56(S1), 1513-1589. https://doi.org/10.1007/s10462-023-10562-9
  • Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. 34th International Conference on Machine Learning, ICML 2017, 3.
  • Hamilton, J. D. (1994). Time Series Analysis Princeton University Press. Içinde Princeton, NJ.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long Short Term Memory. Neural Computation. Neural Computation, 9(8).
  • Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: principles and practice, 3rd edition. International Journal of Forecasting, 22(4).
  • Imamguluyev, R. (2025). Integrating Fuzzy Logic with Deep Learning: A New Approach to Explainable Artificial Intelligence. 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), 1701-1706. https://doi.org/10.1109/ICMCSI64620.2025.10883618
  • Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541
  • Kendall, A., & Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning for computer vision? Advances in Neural Information Processing Systems, 2017-December.
  • Kocak, C., Egrioglu, E., & Bas, E. (2021). A new deep intuitionistic fuzzy time series forecasting method based on long short-term memory. Journal of Supercomputing, 77(6). https://doi.org/10.1007/s11227-020-03503-8
  • Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702. https://doi.org/https://doi.org/10.1016/j.ejor.2016.10.031
  • Latifi, F., Hosseini, R., & Sharifi, A. (2024). Fuzzy deep learning for modeling uncertainty in character recognition using EEG signals. Applied Soft Computing, 159, 111575. https://doi.org/10.1016/j.asoc.2024.111575
  • LeCun, Y., Hinton, G., & Bengio, Y. (2015). Deep learning (2015), Y. LeCun, Y. Bengio and G. Hinton. Nature, 521.
  • Li, W., Fujita, H., Zhang, C., & Su, S.-F. (2025). Editorial: Fuzzy Big Data-Driven Computational Intelligence Models and Applications. International Journal of Fuzzy Systems, 27(2), 522-527. https://doi.org/10.1007/s40815-024-01821-0
  • Li, Y., Chen, C., Hu, X., Qin, J., & Ma, Y. (2021). Fuzzy Rule-Based Models: A Design with Prototype Relocation and Granular Generalization. Information Sciences, 562. https://doi.org/10.1016/j.ins.2020.12.093
  • Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13. https://doi.org/http://dx.doi.org/10.1016/S0020-7373(75)80002-2
  • Mikus, M., Konecny, Ja., Krömer, P., Bancik, K., Konecny, Ji., Choutka, J., & Prauzek, M. (2025). Analysis of the computational costs of an evolutionary fuzzy rule-based internet-of-things energy management approach. Ad Hoc Networks, 168, 103715. https://doi.org/10.1016/j.adhoc.2024.103715
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. http://dx.doi.org/10.1038/323533a0
  • Sagheer, A., Hamdoun, H., & Youness, H. (2021). Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series. Sensors, 21(13). https://doi.org/10.3390/s21134379
  • Shin, Y., & Ghosh, J. (1991). The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation. IJCNN-91-Seattle International Joint Conference on Neural Networks, 13-18. https://doi.org/10.1109/IJCNN.1991.155142
  • Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series — Part II. Fuzzy Sets and Systems, 62(1), 1-8. https://doi.org/10.1016/0165-0114(94)90067-1
  • Song, X., Deng, L., Wang, H., Zhang, Y., He, Y., & Cao, W. (2024). Deep learning-based time series forecasting. Artificial Intelligence Review, 58(1), 23. https://doi.org/10.1007/s10462-024-10989-8
  • Tak, N. (2021). Meta fuzzy functions based feed-forward neural networks with a single hidden layer for forecasting. Journal of Statistical Computation and Simulation, 91(13). https://doi.org/10.1080/00949655.2021.1909024
  • Tak, N., Evren, A. A., Tez, M., & Egrioglu, E. (2018). Recurrent type-1 fuzzy functions approach for time series forecasting. Applied Intelligence, 48(1), 68-77. https://doi.org/10.1007/s10489-017-0962-8
  • Tak, N., & Inan, D. (2022). Type-1 fuzzy forecasting functions with elastic net regularization. Expert Systems With Applications, 199. https://doi.org/10.1016/j.eswa.2022.116916
  • Turksen, I. B. (2008). Fuzzy functions with LSE. Applied Soft Computing, 8(3), 1178-1188. https://doi.org/10.1016/j.asoc.2007.12.004
  • Yıldırım, A., & Bas, E. (2022). Monthly Average Wind Speed Forecasting in Giresun Province with Fuzzy Regression Functions Approach. Journal of Anatolian Environmental and Animal Sciences, 7(1). https://doi.org/10.35229/jaes.1022200
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zheng, Y., Xu, Z., Wu, T., & Yi, Z. (2024). A systematic survey of fuzzy deep learning for uncertain medical data. Artificial Intelligence Review, 57(9), 230. https://doi.org/10.1007/s10462-024-10871-7

Zaman Serisi Öngörüsü için Derin Bulanık Fonksiyonlar Yaklaşımı

Yıl 2025, Cilt: 26 Sayı: 4, 680 - 698
https://doi.org/10.37880/cumuiibf.1749594

Öz

Bu çalışmada, zaman serisi öngörülerinde doğruluk düzeyini artırmak ve verideki belirsizlikleri yapılandırılmış biçimde dikkate almak amacıyla, klasik tip-1 bulanık fonksiyonlar yaklaşımı ile uzun kısa süreli bellek (LSTM) temelli derin öğrenme modellerinin bir araya getirildiği yeni bir öngörü yöntemi geliştirilmiştir. Geliştirilen yöntemde, her bir bulanık kümeye karşılık gelen bağımsız LSTM modelleri yapılandırılmış ve bu modeller, belirli gecikmeli değişkenlere dayalı olarak eğitilmiştir. Öngörü sürecinde, her bir modelin çıktısı, ilgili gözlemin kümelere aitlik dereceleri ile ağırlıklandırılarak nihai tahmin değeri (öngörü) elde edilmiştir. Bu sayede, önerilen derin bulanık öngörü fonksiyonları (DBF) yaklaşımı ile hem zaman serisinin dinamik örüntülerini hem de gözlemler arasındaki belirsizlikleri aynı anda dikkate alınabilmiştir. Modelin eğitimi sürecinde Adam optimizasyon algoritması kullanılmış ve epoch sayısı, gizli birim sayısı, küme sayısı ile α-kesim katsayısı gibi hiperparametreler çeşitli kombinasyonlar halinde test edilmiştir. En uygun parametre ayarları deneysel olarak belirlenmiştir. Önerilen DBF yaklaşımı, farklı özelliklere sahip finansal ve meteorolojik zaman serisi veri kümeleri üzerinde değerlendirilmiş ve mevcut öngörü yöntemleri ile karşılaştırılmıştır. Uygulama sonuçlarında, önerilen DBF yönteminin pek çok senaryoda en düşük öngörü hatasını verdiği ve özellikle kısa ve orta vadeli öngörülerde yüksek başarı sağladığı görülmüştür. Bu bulgular, geliştirilen yaklaşımın genellenebilirliğe sahip, esnek ve kararlı bir öngörü çerçevesi sunduğunu ve çeşitli alanlarda kullanılabilecek nitelikte olduğunu göstermektedir.

Etik Beyan

Bu çalışmanın hazırlanma sürecinde bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan olunur.

Destekleyen Kurum

Giresun Üniversitesi

Proje Numarası

FEN-BAP-A-250221-36

Kaynakça

  • Aktoprak, M. R., & Cagcag Yolcu, O. (2025). A New Approach for Time Series Prediction: Fuzzy Regression Network Functions. International Journal of Advances in Engineering and Pure Sciences, 37(1), 36-52. https://doi.org/10.7240/jeps.1573839
  • Aladag, C. H. (2013). Using multiplicative neuron model to establish fuzzy logic relationships. Expert Systems with Applications, 40(3). https://doi.org/10.1016/j.eswa.2012.05.039
  • Aladag, C. H., Turksen, I. B., Dalar, A. Z., Egrioglu, E., & Yolcu, U. (2014). Application of Type-1 Fuzzy Functions Approach for Time Series Forecasting. TJFS: Turkish Journal of Fuzzy Systems An Official Journal of Turkish Fuzzy Systems Association, 5(1), 1309-1190.
  • Alateeq, M., & Pedrycz, W. (2024). Logic-oriented fuzzy neural networks: A survey. Expert Systems with Applications, 257, 125120. https://doi.org/10.1016/j.eswa.2024.125120
  • AL-Sukeinee, R. J., & Khudeyer, R. S. (2024). Review: Deep Learning and Fuzzy Logic Applications. Engineering and Technology Journal, 09(06). https://doi.org/10.47191/etj/v9i06.09
  • Bas, E., & Egrioglu, E. (2022). A fuzzy regression functions approach based on Gustafson-Kessel clustering algorithm. Information Sciences, 592, 206-214.
  • Bas, E., Egrioglu, E., Aladag, C. H., & Yolcu, U. (2015). Fuzzy-time-series network used to forecast linear and nonlinear time series. Applied Intelligence, 43, 343-355. https://doi.org/10.1007/s10489-015-0647-0
  • Bas, E., Grosan, C., Egrioglu, E., & Yolcu, U. (2018). High order fuzzy time series method based on pi-sigma neural network. Engineering Applications of Artificial Intelligence, 72, 350-356. https://doi.org/10.1016/j.engappai.2018.04.017
  • Baser, F., & Demirhan, H. (2017). A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation. Energy, 123, 229-240. https://doi.org/10.1016/j.energy.2017.02.008
  • Beyhan, S., & Alci, M. (2010). Stable modeling based control methods using a new RBF network. ISA Transactions, 49(4), 510-518. https://doi.org/10.1016/j.isatra.2010.04.005
  • Beyhan, S., & Alci, M. (2011). Extended fuzzy function model with stable learning methods for online system identification. International Journal of Adaptive Control and Signal Processing, 25(2). https://doi.org/10.1002/acs.1214
  • Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & geosciences, 10(2-3), 191-203.
  • Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Içinde Holden-Day series in time series analysis and digital processing (Rev. ed.). Holden-Day. https://books.google.com.tr/books?id=1WVHAAAAMAAJ
  • Cagcag Yolcu, O., & Yolcu, U. (2024). A new ensemble intuitionistic fuzzy-deep forecasting model: Consolidation of the IFRFs-bENR with LSTM. Information Sciences, 679. https://doi.org/10.1016/j.ins.2024.121007
  • Celikyilmaz, A., & Turksen, I. B. (2007). Fuzzy functions with support vector machines. Information Sciences, 177(23), 5163-5177. https://doi.org/10.1016/j.ins.2007.06.022
  • Celikyilmaz, A., & Turksen, I. B. (2008). Enhanced fuzzy system models with improved fuzzy clustering algorithm. IEEE Transactions on Fuzzy Systems, 16(3), 779-794.
  • Celikyilmaz, A., Turksen, I. B., & Kacprzyk, J. (2009). Modeling Uncertainty with Fuzzy Logic: With Recent Theory and Applications. Içinde Studies in Fuzziness and Soft Computing (C. 240). Springer-Verlag Berlin Heidelberg. https://books.google.com.tr/books?id=Xj1vCQAAQBAJ
  • Chakravarty, S., Demirhan, H., & Baser, F. (2020). Fuzzy regression functions with a noise cluster and the impact of outliers on mainstream machine learning methods in the regression setting. Applied Soft Computing, 96, 106535. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106535
  • Chakravarty, S., Demirhan, H., & Baser, F. (2022a). Modified fuzzy regression functions with a noise cluster against outlier contamination. Expert Systems with Applications, 205. https://doi.org/10.1016/j.eswa.2022.117717
  • Chakravarty, S., Demirhan, H., & Baser, F. (2022b). Robust wind speed estimation with modified fuzzy regression functions with a noise cluster. Energy Conversion and Management, 266. https://doi.org/10.1016/j.enconman.2022.115815
  • Chen, S. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81(3), 311-319. https://doi.org/10.1016/0165-0114(95)00220-0
  • Dalar, A. Z. (2023). Ensemble Based Type-1 Fuzzy Functions Approach for Time Series Forecasting. Içinde S. Küçükkolbaşı (Ed.), 2023 Proceedings of International E-Conference on Mathematical and Statistical Sciences: A Selcuk Meeting (ss. 78-78). Selçuk University.
  • Dalar, A. Z., & Egrioglu, E. (2018). Bootstrap Type-1 Fuzzy Functions Approach for Time Series Forecasting. Içinde M. Tez & D. von Rosen (Ed.), Trends and Perspectives in Linear Statistical Inference (ss. 69-87). Springer, Cham. https://doi.org/10.1007/978-3-319-73241-1_5
  • Dalar, A. Z., & Egrioglu, E. (2025). Blending traditional and novel techniques: Hybrid type-1 fuzzy functions for forecasting. Engineering Applications of Artificial Intelligence, 148, 110445. https://doi.org/10.1016/J.ENGAPPAI.2025.110445
  • Demirhan, H., & Baser, F. (2024). Hierarchical fuzzy regression functions for mixed predictors and an application to real estate price prediction. Neural computing & applications (Print), 36, 11545-11561. https://doi.org/10.1007/s00521-024-09673-3
  • Demirkan Piskin, M., & Bas, E. (2022). Forecasting Monthly Housing Sales to Foreigners with Type 1 Fuzzy Regression Functions Approach Based on Ridge Regression. Karadeniz Fen Bilimleri Dergisi, 12(2). https://doi.org/10.31466/kfbd.1074832
  • Ducange, P., Fazzolari, M., & Marcelloni, F. (2020). An overview of recent distributed algorithms for learning fuzzy models in Big Data classification. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00298-6
  • Egrioglu, E., Aladag, C. H., Yolcu, U., & Bas, E. (2014). A new adaptive network based fuzzy inference system for time series forecasting. Aloy Journal of Soft Computing and Applications, 2(1), 25-32.
  • Egrioglu, E., & Bas, E. (2023). Robust intuitionistic fuzzy regression functions approaches. Information Sciences, 638. https://doi.org/10.1016/j.ins.2023.118992
  • Egrioglu, E., Fildes, R., & Bas, E. (2022). Recurrent fuzzy time series functions approaches for forecasting. Granular Computing, 7(1). https://doi.org/10.1007/s41066-021-00257-3
  • Egrioglu, E., Yolcu, U., & Bas, E. (2019). Intuitionistic high-order fuzzy time series forecasting method based on pi-sigma artificial neural networks trained by artificial bee colony. Granular Computing, 4(4). https://doi.org/10.1007/s41066-018-00143-5
  • Fernández, A., Carmona, C. J., del Jesus, M. J., & Herrera, F. (2016). A View on Fuzzy Systems for Big Data: Progress and Opportunities. International Journal of Computational Intelligence Systems, 9. https://doi.org/10.1080/18756891.2016.1180820
  • Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2023). A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 56(S1), 1513-1589. https://doi.org/10.1007/s10462-023-10562-9
  • Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. 34th International Conference on Machine Learning, ICML 2017, 3.
  • Hamilton, J. D. (1994). Time Series Analysis Princeton University Press. Içinde Princeton, NJ.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long Short Term Memory. Neural Computation. Neural Computation, 9(8).
  • Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: principles and practice, 3rd edition. International Journal of Forecasting, 22(4).
  • Imamguluyev, R. (2025). Integrating Fuzzy Logic with Deep Learning: A New Approach to Explainable Artificial Intelligence. 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), 1701-1706. https://doi.org/10.1109/ICMCSI64620.2025.10883618
  • Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541
  • Kendall, A., & Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning for computer vision? Advances in Neural Information Processing Systems, 2017-December.
  • Kocak, C., Egrioglu, E., & Bas, E. (2021). A new deep intuitionistic fuzzy time series forecasting method based on long short-term memory. Journal of Supercomputing, 77(6). https://doi.org/10.1007/s11227-020-03503-8
  • Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702. https://doi.org/https://doi.org/10.1016/j.ejor.2016.10.031
  • Latifi, F., Hosseini, R., & Sharifi, A. (2024). Fuzzy deep learning for modeling uncertainty in character recognition using EEG signals. Applied Soft Computing, 159, 111575. https://doi.org/10.1016/j.asoc.2024.111575
  • LeCun, Y., Hinton, G., & Bengio, Y. (2015). Deep learning (2015), Y. LeCun, Y. Bengio and G. Hinton. Nature, 521.
  • Li, W., Fujita, H., Zhang, C., & Su, S.-F. (2025). Editorial: Fuzzy Big Data-Driven Computational Intelligence Models and Applications. International Journal of Fuzzy Systems, 27(2), 522-527. https://doi.org/10.1007/s40815-024-01821-0
  • Li, Y., Chen, C., Hu, X., Qin, J., & Ma, Y. (2021). Fuzzy Rule-Based Models: A Design with Prototype Relocation and Granular Generalization. Information Sciences, 562. https://doi.org/10.1016/j.ins.2020.12.093
  • Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13. https://doi.org/http://dx.doi.org/10.1016/S0020-7373(75)80002-2
  • Mikus, M., Konecny, Ja., Krömer, P., Bancik, K., Konecny, Ji., Choutka, J., & Prauzek, M. (2025). Analysis of the computational costs of an evolutionary fuzzy rule-based internet-of-things energy management approach. Ad Hoc Networks, 168, 103715. https://doi.org/10.1016/j.adhoc.2024.103715
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. http://dx.doi.org/10.1038/323533a0
  • Sagheer, A., Hamdoun, H., & Youness, H. (2021). Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series. Sensors, 21(13). https://doi.org/10.3390/s21134379
  • Shin, Y., & Ghosh, J. (1991). The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation. IJCNN-91-Seattle International Joint Conference on Neural Networks, 13-18. https://doi.org/10.1109/IJCNN.1991.155142
  • Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series — Part II. Fuzzy Sets and Systems, 62(1), 1-8. https://doi.org/10.1016/0165-0114(94)90067-1
  • Song, X., Deng, L., Wang, H., Zhang, Y., He, Y., & Cao, W. (2024). Deep learning-based time series forecasting. Artificial Intelligence Review, 58(1), 23. https://doi.org/10.1007/s10462-024-10989-8
  • Tak, N. (2021). Meta fuzzy functions based feed-forward neural networks with a single hidden layer for forecasting. Journal of Statistical Computation and Simulation, 91(13). https://doi.org/10.1080/00949655.2021.1909024
  • Tak, N., Evren, A. A., Tez, M., & Egrioglu, E. (2018). Recurrent type-1 fuzzy functions approach for time series forecasting. Applied Intelligence, 48(1), 68-77. https://doi.org/10.1007/s10489-017-0962-8
  • Tak, N., & Inan, D. (2022). Type-1 fuzzy forecasting functions with elastic net regularization. Expert Systems With Applications, 199. https://doi.org/10.1016/j.eswa.2022.116916
  • Turksen, I. B. (2008). Fuzzy functions with LSE. Applied Soft Computing, 8(3), 1178-1188. https://doi.org/10.1016/j.asoc.2007.12.004
  • Yıldırım, A., & Bas, E. (2022). Monthly Average Wind Speed Forecasting in Giresun Province with Fuzzy Regression Functions Approach. Journal of Anatolian Environmental and Animal Sciences, 7(1). https://doi.org/10.35229/jaes.1022200
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zheng, Y., Xu, Z., Wu, T., & Yi, Z. (2024). A systematic survey of fuzzy deep learning for uncertain medical data. Artificial Intelligence Review, 57(9), 230. https://doi.org/10.1007/s10462-024-10871-7
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekonometrik ve İstatistiksel Yöntemler, Zaman Serileri Analizi, İstatistik (Diğer)
Bölüm Makaleler
Yazarlar

Ali Zafer Dalar 0000-0002-8574-461X

Proje Numarası FEN-BAP-A-250221-36
Erken Görünüm Tarihi 22 Ekim 2025
Yayımlanma Tarihi 26 Ekim 2025
Gönderilme Tarihi 23 Temmuz 2025
Kabul Tarihi 8 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 4

Kaynak Göster

APA Dalar, A. Z. (2025). Zaman Serisi Öngörüsü için Derin Bulanık Fonksiyonlar Yaklaşımı. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 26(4), 680-698. https://doi.org/10.37880/cumuiibf.1749594

Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.